• Title/Summary/Keyword: Image Data Processing Equipment

Search Result 86, Processing Time 0.024 seconds

A Real-Time Control of SCARA Robot Based Image Feedback (이미지 피드백에 의한 스카라 로봇의 실시간 제어)

  • Lee, Woo-Song;Koo, Young-Mok;Shim, Hyun-Seok;Lee, Sang-Hoon;Kim, Dong-Yeop
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.54-60
    • /
    • 2014
  • The equipment of SCARA robot in processing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS). We can save much efforts and time in adjusting robots to newly defined workcells by using OLPS. A proposed visual calibration scheme is based on position-based visual feedback. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not requirethe precise calculation of tree-dimensional object data and image Jacobian.

Development of Auto Positioning Laser System by using Image Measurement Data (영상 측정 데이터를 이용한 위치보정 레이저 가공시스템 개발)

  • Pyo, Chang-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.36-40
    • /
    • 2013
  • Recently, electronic equipments become smaller, more functional, and more complex than before. As these trends, MLC(multi-layer ceramic) circuit has been emerged to a promising technology in semiconductor inspection industry. Especially, multi-layer ceramic which is consisted of many fine-pitch multi-hole is used to produce a semiconductor inspection unit. The hole is processed by UV laser. But, working conditions are changed all the time. Therefore real time measurement of fine-pitch multi-hole is very important method for ensuring performance. In this paper we found the best method for illuminating and auto focusing. And, we verified our equipment.

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

Sound Field Visualization System Development for Reducing Noise of Marine Equipment (조선기자재 소음저감을 위한 음장가시화법 개발)

  • Kim, Chang-Nam;Sun, Jin-Suk;Wang, Ji-Suk;Kim, Ue-Kan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.169-170
    • /
    • 2006
  • The main purpose of this study is to develop a program for sound field visualization system which gets noise signals in microphones array for incoming noise signals and it uses to operate noise signals and to store data in multi-channel FFT and is consisted to visualize noise signals with a image which is got by camera in center of array by using beamforming algorithm of the array signal processing.

  • PDF

A Study on a Long-term Demand Forecasting and Characterization of Diffusion Process for Medical Equipments based on Diffusion Model (확산 모형에 의한 고가 의료기기의 수요 확산의 특성분석 및 중장기 수요예측에 관한 연구)

  • Hong, Jung-Sik;Kim, Tae-Gu;Lim, Dar-Oh
    • Health Policy and Management
    • /
    • v.18 no.4
    • /
    • pp.85-110
    • /
    • 2008
  • In this study, we explore the long-term demand forecasting of high-price medical equipments based on logistic and Bass diffusion model. We analyze the specific pattern of each equipment's diffusion curve by interpreting the parameter estimates of Bass diffusion model. Our findings are as follows. First, ultrasonic imaging system, CT are in the stage of maturity and so, the future demands of them are not too large. Second, medical image processing unit is between growth stage and maturity stage and so, the demand is expected to increase considerably for two or three years. Third, MRI is in the stage of take-off and Mammmography X-ray system is in the stage of maturity but, estimates of the potential number of adopters based on logistic model is considerably different to that based on Bass diffusion model. It means that additional data for these two equipments should be collected and analyzed to obtain the reliable estimates of their demands. Fourth, medical image processing unit have the largest q value. It means that the word-of-mouth effect is important in the diffusion of this equipment. Fifth, for MRI and Ultrasonic system, q/p values have the relatively large value. It means that collective power has an important role in adopting these two equipments.

Weighted Filter Algorithm based on Distribution Pattern of Pixel Value for AWGN Removal (AWGN 제거를 위한 화소값 분포패턴에 기반한 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.44-49
    • /
    • 2022
  • Abstract Recently, with the development of IoT technology and communication media, various video equipment is being used in industrial fields. Image data acquired from cameras and sensors are easily affected by noise during transmission and reception, and noise removal is essential as it greatly affects system reliability. In this paper, we propose a weight filter algorithm based on the pixel value distribution pattern to preserve details in the process of restoring images damaged in AWGN. The proposed algorithm calculates weights according to the pixel value distribution pattern of the image and restores the image by applying a filtering mask. In order to analyze the noise removal performance of the proposed algorithm, it was simulated using enlarged image and PSNR compared to the existing method. The proposed algorithm preserves important characteristics of the image and shows the performance of efficiently removing noise compared to the existing method.

Development of an Algorithm to Measure the Road Traffic Data Using Video Camera

  • Kim, Hie-Sik;Kim, Jin-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.95.2-95
    • /
    • 2002
  • 1. Introduction of Camera Detection system Camera Detection system is an equipment that can detect realtime traffic information by image processing techniques. This information can be used to analyze and control road traffic flow. It is also used as a method to detect and control traffic flow for ITS(Intelligent Transportation System). Traffic information includes speed, head way, traffic flow, occupation time and length of queue. There are many detection systems for traffic data. But video detection system can detect multiple lanes with only one camera and collect various traffic information. So it is thought to be the most efficient method of all detection system. Though the...

  • PDF

011-line Visual Feedback Control of Industrial Robot Manipulator (산업용 로봇 매니퓰레이터의 오프라인 영상피드백 제어)

  • 신행봉;정동연;김용태;이종두;이강두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.567-572
    • /
    • 2002
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS ). We can save much efforts and time in adjusting robots to newly defined workcells by using Off-Line Programming System. A proposed visual calibration scheme is based on position-based visual feedback. The visual calibration system is composed of a personal computer, an image processing board, a video monitor, and one camera. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

Off-line Visual Feedback Control of Robot Manipulator (로봇 매니퓰레이터의 오프라인 영상피드백 제어)

  • 신행봉;정동연;이종두;이강두;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.140-145
    • /
    • 2001
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS). We can save much efforts and time in adjusting robots to newly defined workcells by using Off-Line Programming System. A proposed visual calibration scheme is based on position-based visual feedback. The visual calibration system is composed of a personal computer, an image processing board, a video monitor, and one camera. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.