• Title/Summary/Keyword: Image Data Augmentation

Search Result 172, Processing Time 0.023 seconds

A Study on Improving the Accuracy of Medical Images Classification Using Data Augmentation

  • Cheon-Ho Park;Min-Guan Kim;Seung-Zoon Lee;Jeongil Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.167-174
    • /
    • 2023
  • This paper attempted to improve the accuracy of the colorectal cancer diagnosis model using image data augmentation in convolutional neural network. Image data augmentation was performed by flipping, rotation, translation, shearing and zooming with basic image manipulation method. This study split 4000 training data and 1000 test data for 5000 image data held, the model is learned by adding 4000 and 8000 images by image data augmentation technique to 4000 training data. The evaluation results showed that the clasification accuracy for 4000, 8000, and 12,000 training data were 85.1%, 87.0%, and 90.2%, respectively, and the improvement effect depending on the increase of image data was confirmed.

Supervised text data augmentation method for deep neural networks

  • Jaehwan Seol;Jieun Jung;Yeonseok Choi;Yong-Seok Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.343-354
    • /
    • 2023
  • Recently, there have been many improvements in general language models using architectures such as GPT-3 proposed by Brown et al. (2020). Nevertheless, training complex models can hardly be done if the number of data is very small. Data augmentation that addressed this problem was more than normal success in image data. Image augmentation technology significantly improves model performance without any additional data or architectural changes (Perez and Wang, 2017). However, applying this technique to textual data has many challenges because the noise to be added is veiled. Thus, we have developed a novel method for performing data augmentation on text data. We divide the data into signals with positive or negative meaning and noise without them, and then perform data augmentation using k-doc augmentation to randomly combine signals and noises from all data to generate new data.

A Scheme for Preventing Data Augmentation Leaks in GAN-based Models Using Auxiliary Classifier (보조 분류기를 이용한 GAN 모델에서의 데이터 증강 누출 방지 기법)

  • Shim, Jong-Hwa;Lee, Ji-Eun;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.176-185
    • /
    • 2022
  • Data augmentation is general approach to solve overfitting of machine learning models by applying various data transformations and distortions to dataset. However, when data augmentation is applied in GAN-based model, which is deep learning image generation model, data transformation and distortion are reflected in the generated image, then the generated image quality decrease. To prevent this problem called augmentation leak, we propose a scheme that can prevent augmentation leak regardless of the type and number of augmentations. Specifically, we analyze the conditions of augmentation leak occurrence by type and implement auxiliary augmentation task classifier that can prevent augmentation leak. Through experiments, we show that the proposed technique prevents augmentation leak in the GAN model, and as a result improves the quality of the generated image. We also demonstrate the superiority of the proposed scheme through ablation study and comparison with other representative augmentation leak prevention technique.

An Efficient Data Augmentation for 3D Medical Image Segmentation (3차원 의료 영상의 영역 분할을 위한 효율적인 데이터 보강 방법)

  • Park, Sangkun
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • Deep learning based methods achieve state-of-the-art accuracy, however, they typically rely on supervised training with large labeled datasets. It is known in many medical applications that labeling medical images requires significant expertise and much time, and typical hand-tuned approaches for data augmentation fail to capture the complex variations in such images. This paper proposes a 3D image augmentation method to overcome these difficulties. It allows us to enrich diversity of training data samples that is essential in medical image segmentation tasks, thus reducing the data overfitting problem caused by the fact the scale of medical image dataset is typically smaller. Our numerical experiments demonstrate that the proposed approach provides significant improvements over state-of-the-art methods for 3D medical image segmentation.

Methodology of Applying Randomness for Boosting Image Classification Performance (이미지 분류 성능 향상을 위한 무작위성 적용 방법론)

  • Juyong Park;Yuri Jeon;Miyeong Kim;Jeongmin Lee;Yoonsuk Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.5
    • /
    • pp.251-257
    • /
    • 2024
  • Securing various types of training data in image Classification is important for improving performance. However, increasing the amount of original data is cost-limited, so data diversity can be secured by transforming images through data augmentation. Recently, a new deep learning approach using Generative AI models like GAN or Diffusion Based models has emerged in the Data Augmentation task, and reinforcement learning-based methods such as AutoAugment and Deep AutoAugment using existing basic Augmentation techniques are also showing good performance. However, this method has the disadvantage of having a complicated optimization procedure and high computational cost. This paper conducted various experiments with existing methods Cutmix, Mixup, RandAugment. By combining these techniques appropriately, we obtained higher performance than existing method without much effort. Additionally, our ablation experiment shows that additional hyper-parameter adjustments are needed for the basic augmentation types when we use RandAugment. Our code is available at https://github.com/lliee1/Randomness_Analysis.

A rubber o-ring defect detection system using data augmentation based on the SinGAN and random forest algorithm (SinGAN기반 데이터 증강과 random forest알고리즘을 이용한 고무 오링 결함 검출 시스템)

  • Lee, Yong Eun;Lee, Han Sung;Kim, Dae Won;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.63-68
    • /
    • 2021
  • In this study, data was augmentation through the SinGAN algorithm using small image data, and defects in rubber O-rings were detected using the random forest algorithm. Unlike the commonly used data augmentation image rotation method to solve the data imbalance problem, the data imbalance problem was solved by using the SinGAN algorithm. A study was conducted to distinguish between normal products and defective products of rubber o-ring by using the random forest algorithm. A total of 20,000 image date were divided into transit and testing datasets, and an accuracy result was obtained to distinguish 97.43% defects as a result of the test.

Performance Analysis of Data Augmentation for Surface Defects Detection (표면 결함 검출을 위한 데이터 확장 및 성능분석)

  • Kim, Junbong;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.669-674
    • /
    • 2018
  • Data augmentation is an efficient way to reduce overfitting on models and to improve a performance supplementing extra data for training. It is more important in deep learning based industrial machine vision. Because deep learning requires huge scale of learning data to learn a model, but acquisition of data can be limited in most of industrial applications. A very generic method for augmenting image data is to perform geometric transformations, such as cropping, rotating, translating and adjusting brightness of the image. The effectiveness of data augmentation in image classification has been reported, but it is rare in defect inspections. We explore and compare various basic augmenting operations for the metal surface defects. The experiments were executed for various types of defects and different CNN networks and analysed for performance improvements by the data augmentations.

Data Augmentation Effect of StyleGAN-Generated Images in Deep Neural Network Training for Medical Image Classification (의료영상 분류를 위한 심층신경망 훈련에서 StyleGAN 합성 영상의 데이터 증강 효과 분석)

  • Hansang Lee;Arha Woo;Helen Hong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.4
    • /
    • pp.19-29
    • /
    • 2024
  • In this paper, we examine the effectiveness of StyleGAN-generated images for data augmentation in training deep neural networks for medical image classification. We apply StyleGAN data augmentation to train VGG-16 networks for pneumonia diagnosis from chest X-ray images and focal liver lesion classification from abdominal CT images. Through quantitative and qualitative analyses, our experiments reveal that StyleGAN data augmentation expands the outer class boundaries in the feature space. Thanks to this expansion characteristics, the StyleGAN data augmentation can enhance classification performance when properly combined with real training images.

Dog-Species Classification through CycleGAN and Standard Data Augmentation

  • Chan, Park;Nammee, Moon
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.67-79
    • /
    • 2023
  • In the image field, data augmentation refers to increasing the amount of data through an editing method such as rotating or cropping a photo. In this study, a generative adversarial network (GAN) image was created using CycleGAN, and various colors of dogs were reflected through data augmentation. In particular, dog data from the Stanford Dogs Dataset and Oxford-IIIT Pet Dataset were used, and 10 breeds of dog, corresponding to 300 images each, were selected. Subsequently, a GAN image was generated using CycleGAN, and four learning groups were established: 2,000 original photos (group I); 2,000 original photos + 1,000 GAN images (group II); 3,000 original photos (group III); and 3,000 original photos + 1,000 GAN images (group IV). The amount of data in each learning group was augmented using existing data augmentation methods such as rotating, cropping, erasing, and distorting. The augmented photo data were used to train the MobileNet_v3_Large, ResNet-152, InceptionResNet_v2, and NASNet_Large frameworks to evaluate the classification accuracy and loss. The top-3 accuracy for each deep neural network model was as follows: MobileNet_v3_Large of 86.4% (group I), 85.4% (group II), 90.4% (group III), and 89.2% (group IV); ResNet-152 of 82.4% (group I), 83.7% (group II), 84.7% (group III), and 84.9% (group IV); InceptionResNet_v2 of 90.7% (group I), 88.4% (group II), 93.3% (group III), and 93.1% (group IV); and NASNet_Large of 85% (group I), 88.1% (group II), 91.8% (group III), and 92% (group IV). The InceptionResNet_v2 model exhibited the highest image classification accuracy, and the NASNet_Large model exhibited the highest increase in the accuracy owing to data augmentation.

Object Detection Accuracy Improvements of Mobility Equipments through Substitution Augmentation of Similar Objects (유사물체 치환증강을 통한 기동장비 물체 인식 성능 향상)

  • Heo, Jiseong;Park, Jihun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.300-310
    • /
    • 2022
  • A vast amount of labeled data is required for deep neural network training. A typical strategy to improve the performance of a neural network given a training data set is to use data augmentation technique. The goal of this work is to offer a novel image augmentation method for improving object detection accuracy. An object in an image is removed, and a similar object from the training data set is placed in its area. An in-painting algorithm fills the space that is eliminated but not filled by a similar object. Our technique shows at most 2.32 percent improvements on mAP in our testing on a military vehicle dataset using the YOLOv4 object detector.