• Title/Summary/Keyword: Image Blur

Search Result 223, Processing Time 0.028 seconds

A Study on Improvement in Digital Image Restoration by a Recursive Vector Processing (순환벡터처리에 의한 디지털 영상복원에 관한 연구)

  • 이대영;이윤현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.3
    • /
    • pp.105-112
    • /
    • 1983
  • This paper discribes technique of the recursive restoration for the images degraded by linear space invariant blur and additive white Gaussian noise. The image is characterized statistically by tis mean and correlation function. An exponential autocorrelation function has been used to model neighborhood model. The vector model was used because of analytical simplicitly and capability to implement brightness correlation function. Base on the vector model, a two-dimensional discrete stochastic a 12 point neighborhood model for represeting images was developme and used the technique of moving window processing to restore blurred and noisy images without dimensionality increesing, It has been shown a 12 point neighborhood model was found to be more adequate than a 8 point pixel model to obtain optimum pixel estimated. If the image is highly correlated, it is necessary to use a large number of points in the neighborhood in order to have improvements in restoring image. It is believed that these result could be applied to a wide range of image processing problem. Because image processing thchniques normally required a 2-D linear filtering.

  • PDF

Global Contrast Enhancement Method for the Digital Image using 2D Filter to Enhance the edges and JND according to the Surrounding Brightness (Edge 강화 2차원 필터와 주변 밝기에 따른 JND를 이용한 영상의 전역적 대비 향상 방법)

  • Kim, Bongsung;Kang, Bongsoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.99-100
    • /
    • 2015
  • Digital image blur occurs due to various environmental conditions at the time of shooting. Blur produces the low-frequency component in the image. This problem worsens the quality of the digital image. To address this issue, contrast improvement methods has been widely studied. 2D filter to enhance the edges is a simple structure with a fast processing speed. However, the sensitivity of the human visual system is different depending on the surrounding brightness locally. Thus, in this paper, we proposed feature-based contrast enhancement method for the digital image using 2D filter to enhance the edges and JND(Just Noticeable Difference) according to the surrounding brightness. We confirmed the result image of proposed method and identified that the contrast is improved.

  • PDF

Deblurring of the Blurred Image Caused by the Vibration of the Interlaced Scan Type Digital Camera (인터레이스드 스캔방식 디지털 카메라의 떨림에 의한 영상블러 제거)

  • Chon Jcechoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.165-175
    • /
    • 2005
  • If the interlaced scan type camera moves while an image is filming from the camera, blur is often created from the misalignment of the two images of even and odd lines. This paper proposed an algorithm which removes the misalignment of the even and odd line images cased by the vibration of the interlaced scan type camera. The blurred original image is separated into the even and the odd line images as half size. Based on these two images, two full sized images are generated using interpolation technique. If a big difference between these two interpolated images is generated, the original image is taken while the camera is moving. In this case, a deblurred image is obtained with the alignment of these separated two images through feature point extraction, feature point matching, sub-pixel matching, outlier detection, and image mosaicking processes. This paper demonstrated that the proposed algorithm can create clear images from blurred images caused by various camera motions.

Image Restoration Network with Adaptive Channel Attention Modules for Combined Distortions (적응형 채널 어텐션 모듈을 활용한 복합 열화 복원 네트워크)

  • Lee, Haeyun;Cho, Sunghyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • The image obtained from systems such as autonomous driving cars or fire-fighting robots often suffer from several degradation such as noise, motion blur, and compression artifact due to multiple factor. It is difficult to apply image recognition to these degraded images, then the image restoration is essential. However, these systems cannot recognize what kind of degradation and thus there are difficulty restoring the images. In this paper, we propose the deep neural network, which restore natural images from images degraded in several ways such as noise, blur and JPEG compression in situations where the distortion applied to images is not recognized. We adopt the channel attention modules and skip connections in the proposed method, which makes the network focus on valuable information to image restoration. The proposed method is simpler to train than other methods, and experimental results show that the proposed method outperforms existing state-of-the-art methods.

Parameterized Modeling of Spatially Varying PSF for Lens Aberration and Defocus

  • Wang, Chao;Chen, Juan;Jia, Hongguang;Shi, Baosong;Zhu, Ruifei;Wei, Qun;Yu, Linyao;Ge, Mingda
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.136-143
    • /
    • 2015
  • Image deblurring by a deconvolution method requires accurate knowledge of the blur kernel. Existing point spread function (PSF) models in the literature corresponding to lens aberrations and defocus are either parameterized and spatially invariant or spatially varying but discretely defined. In this paper, a parameterized model is developed and presented for a PSF which is spatially varying due to lens aberrations and defocus in an imaging system. The model is established from the Seidel third-order aberration coefficient and the Hu moment. A skew normal Gauss model is selected for parameterized PSF geometry structure. The accuracy of the model is demonstrated with simulations and measurements for a defocused infrared camera and a single spherical lens digital camera. Compared with optical software Code V, the visual results of two optical systems validate our analysis and proposed method in size, shape and direction. Quantitative evaluation results reveal the excellent accuracy of the blur kernel model.

Bokeh Effect Algorithm using Defocus Map in Single Image (단일 영상에서 디포커스 맵을 활용한 보케 효과 알고리즘)

  • Lee, Yong-Hwan;Kim, Heung Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.87-91
    • /
    • 2022
  • Bokeh effect is a stylistic technique that can produce blurring the background of photos. This paper implements to produce a bokeh effect with a single image by post processing. Generating depth map is a key process of bokeh effect, and depth map is an image that contains information relating to the distance of the surfaces of scene objects from a viewpoint. First, this work presents algorithms to determine the depth map from a single input image. Then, we obtain a sparse defocus map with gradient ratio from input image and blurred image. Defocus map is obtained by propagating threshold values from edges using matting Laplacian. Finally, we obtain the blurred image on foreground and background segmentation with bokeh effect achieved. With the experimental results, an efficient image processing method with bokeh effect applied using a single image is presented.

Depth From Defocus using Wavelet Transform (웨이블릿 변환을 이용한 Depth From Defocus)

  • Choi, Chang-Min;Choi, Tae-Sun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.19-26
    • /
    • 2005
  • In this paper, a new method for obtaining three-dimensional shape of an object by measuring relative blur between images using wavelet analysis has been described. Most of the previous methods use inverse filtering to determine the measure of defocus. These methods suffer from some fundamental problems like inaccuracies in finding the frequency domain representation, windowing effects, and border effects. Besides these deficiencies, a filter, such as Laplacian of Gaussian, that produces an aggregate estimate of defocus for an unknown texture, can not lead to accurate depth estimates because of the non-stationary nature of images. We propose a new depth from defocus (DFD) method using wavelet analysis that is capable of performing both the local analysis and the windowing technique with variable-sized regions for non-stationary images with complex textural properties. We show that normalized image ratio of wavelet power by Parseval's theorem is closely related to blur parameter and depth. Experimental results have been presented demonstrating that our DFD method is faster in speed and gives more precise shape estimates than previous DFD techniques for both synthetic and real scenes.

Robust k-means Clustering-based High-speed Barcode Decoding Method to Blur and Illumination Variation (블러와 조명 변화에 강인한 k-means 클러스터링 기반 고속 바코드 정보 추출 방법)

  • Kim, Geun-Jun;Cho, Hosang;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • In this paper presents Robust k-means clustering-based high-speed bar code decoding method to blur and lighting. for fast operation speed and robust decoding to blur, proposed method uses adaptive local threshold binarization methods that calculate threshold value by dividing blur region and a non-blurred region. Also, in order to prevent decoding fail from the noise, decoder based on k-means clustering algorithm is implemented using area data summed pixel width line of the same number of element. Results of simulation using samples taken at various worst case environment, the average success rate of proposed method is 98.47%. it showed the highest decoding success rate among the three comparison programs.

Cloudy Area Detection in Satellite Image using K-Means & GHA (K-Means 와 GHA를 이용한 위성영상 구름영역 검출)

  • 서석배;김종우;최해진
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.405-408
    • /
    • 2003
  • This paper proposes a new algorithm for cloudy area detection using K-Means and GHA (Generalized Hebbian Algorithm). K-Means is one of simple classification algorithm, and GHA is unsupervised neural network for data compression and pattern classification. Proposed algorithm is based on block based image processing that size is l6$\times$l6. Experimental results shows good performance of cloudy area detection except blur cloudy areas.

  • PDF

A depth-based Multi-view Super-Resolution Method Using Image Fusion and Blind Deblurring

  • Fan, Jun;Zeng, Xiangrong;Huangpeng, Qizi;Liu, Yan;Long, Xin;Feng, Jing;Zhou, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5129-5152
    • /
    • 2016
  • Multi-view super-resolution (MVSR) aims to estimate a high-resolution (HR) image from a set of low-resolution (LR) images that are captured from different viewpoints (typically by different cameras). MVSR is usually applied in camera array imaging. Given that MVSR is an ill-posed problem and is typically computationally costly, we super-resolve multi-view LR images of the original scene via image fusion (IF) and blind deblurring (BD). First, we reformulate the MVSR problem into two easier problems: an IF problem and a BD problem. We further solve the IF problem on the premise of calculating the depth map of the desired image ahead, and then solve the BD problem, in which the optimization problems with respect to the desired image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Our approach bridges the gap between MVSR and BD, taking advantages of existing BD methods to address MVSR. Thus, this approach is appropriate for camera array imaging because the blur kernel is typically unknown in practice. Corresponding experimental results using real and synthetic images demonstrate the effectiveness of the proposed method.