• Title/Summary/Keyword: Ilmenite structure

Search Result 24, Processing Time 0.032 seconds

Structure Refinement and Equation of State Studies of the Exsoluted Ilmenite-Hematite (티탄철석-적철석 용출시료의 구조분석과 상태방정식 연구)

  • Hwang, Gil-Chan;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.195-204
    • /
    • 2011
  • Exsolution intergrowth of ilmenite and hematite was studied by the Rietveld refinement method. According to the analysis on these two structural analog minerals, it was found that octahedron (M2) of Ti in ilmenite is in the least deformation, then that (M1) of Fe in ilmenite is deformed next, and octaheron deformation of Fe in hematite is between M1 and M2. High pressure compression experiment was performed up to 5.8 GPa, where two minerals' XRD peaks merged completely. Ilmenite shows normal compression behavior, whereas hematite shrinks in very small amount. This kind of abnormal behavior might be due to the differential response to the applied pressure corresponding to the different compressibilities of the minerals each other.

Crystal Chemistry of Ilmenite from the Hadong anorthosite Massif (하동 회장암체 내에서 산출하는 티탄철석의 결정화학)

  • 최진범;조현구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.43-53
    • /
    • 1996
  • The detailed crystal chemistry of ilmenite from the Hadong massif was studied by the EPMA, M ssbauer spectroscopy, and Rietveld structural refinement using X-ray powder diffraction data. The ilmenite-bearing anorthosite shows complicated mineral assemblage which consists of plagioclase, clinopyroxene, hornblende, biotite, chlorite, apatite, allanite, and zircon. Anorthite is andesine in composition (Ab 28-57), and clinopyroxene drops in ferro-hypersthene (Fs 62-70). Ilmenite is trigonal symmetry with R space group, whose structure shows the alternation of Fe2+ (M1 site) octahedral layer and Ti (M2 site) layer along c axis. M ssbauer spectroscopy indicates that there are three doubles which assigned to couple of Fe2+($\delta$=0.812, 0.890mm/sec) and one Fe3+($\delta$=0.303mm/sec) in octahedral sites. Their Fe3+/$\Sigma$Fe is 0.065 and chemical formula is established as Fe2+0.94Fe3+0.07Ti0.97O3 using both EPMA and M ssbauer analysis. Rietveld structural refinement reveals that site occupancies of Fe in M1 and Ti in M2 are 91.2% and 89.4%, respectively. This implies that Ti and Fe2+ are alternatively occupy M1 and M2 sites. In addition, smaller M2 site is more preferable to Fe3+ occupancy over M1.

  • PDF

Microwave Dielectric Properties of the $MgTiO_3-SrTiO_3$ Ceramics ($MgTiO_3-SrTiO_3$ 세라믹스의 마이크로파 유전특성)

  • 배경인;이상철;최의선;배선기;이영희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.8
    • /
    • pp.376-381
    • /
    • 2001
  • The(1-x) MgTiO$_3$-xSrTiO$_3$(x=0.03~0.04) ceramics were fabricated by the conventional mixed oxide method. The structural and microwave dielectric properties were investigated by XRD, SEM, EDS and network analyzer. The sintering temperature and time were 1275$^{\circ}C$~135$0^{\circ}C$ and 2hours, respectively. In the XRD results of 0.96MgTiO$_3$-0.04SrTiO$_3$ceramics, the perovskite structure of SrTiO$_3$and ilmenite structure of MgTiO$_3$phase were coexisted. The dielectric constant($\varepsilon$(sub)${\gamma}$) and temperature coefficient of resonant frequency($\tau$(sub)f) were increased with addition of SrTiO$_3$. In thie case of 0.96MgTiO$_3$-0.04SrTiO$_3$ ceramics sintered at 13$25^{\circ}C$, the dielectric constant, quality factor(Q) and temperature coefficient of resonant frequency($\tau$(sub)f) were 20.13, 7956(at 7.27GHz), and +1.76ppm/$^{\circ}C$, respectively.

  • PDF

Weldability and Weld Strength of Underwater Welds of Domestic Structural Steel Plates (國산構造용 鋼板 의 水中熔接性 과 熔接强度 特性)

  • 오세규;남기우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.263-269
    • /
    • 1983
  • Underwater welding by a gravity arc welding process was investigated by using six types of coated electrodes and SM41A steel plates of 10 mm thickness as base metal and it was ascertained that this process may be put to practical use. Main results obtained are summarized as follows: 1. Angle of electrode affects no influence on bead appearance and the proper range of welding current and diameter of electrode for the high titanium oxide type is relatively wider than that for the ilmenite type. And the lime titania type, high titanium oxide type and ilmenite type of domestic coated arc welding electrodes of .phi.4 mm could attain the soundest underwater welded joints which contain no welding imperfection. 2. According to macro-structure, micro-structure and hardness distribution inspectionson underwater welded joint, the area between the HAZ and the surface of the weld in neighbourhood of the bond has the maximum hardness value. The structure of these parts is martensite and bainite. Other parts contain mocro-ferrite, micro-pearlite structure, which contain soundness of welded joint free from weld imperfection. 3. On consideration of both tensile strength of more than 100% joint efficiency and sufficient impact value, the welding condition which can get optimal welding strength is heat input of 1,400-1,500 J/mm, current of 200-215 ampere (voltage of 32-33 volts) in the case of lime titania type electrode. 4. Underwater welding strength (tensile strength, impact strength) depends on heat input (or current) quantitatively and they have the relationship of parabolic function. Each experimental equation has a high reliability and its percent of mean error is 4.14%. 5. It is suggested that the optimal design of weld strength by welding condition (current, heat input) could be utilized for a quality control of underwater welding.

A Study on the Iron Compounds of Cinder Cones' Scoria in the Southern Area of Halla Mt., Jeju Island (제주도 한라산 남부 지역 분석구 스코리아의 철 화합물에 관한 연구)

  • Ko, Jeong Dae;Choi, Won Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.213-218
    • /
    • 2016
  • This study reviewed mineral composition on Scoria samples of this area, atomic value state of oxidized steel, and magnetic property in order to look into characteristics of scoria that was distributed in southern area of mountainous areas, Halla Mt. of Jeju Island. By XRD analysis, mineral composition was confirmed, and characteristics of iron compounds existed in samples were investigated through $M{\ddot{o}}ssbauer$ spectroscope. Composing minerals could be learnt as feldspar basalt from XRD analysis because composting minerals were composed of quartz and feldspar anorite mainly, and iron compounds were made up with olivine, pyroxene, ilmenite, hematite, and magnetite. By $M{\ddot{o}}ssbauer$ spectroscope analysis on these iron compounds. it consisted of hematite and magnetite which showed hyperfine magnetic field of sextet mostly, and also doublet by olivine, pyroxene, ilmenite could be seen as appearing together. As a result of comparing with samples of Jeju western area having been announced in previous research, I.S. and Q.S. values of olivine, $Fe^{2+}$, were 122 mm/s and 3.09~3.13 mm/s respectively, and a fact could be known that $Fe^{2+}$ olivine having similar structure each other was contained, and the ratio of $Fe^{3+}/Fe_{tot.}$. was 85.90~92.82 %. From these findings, it was able to be presumed that they belonged to samples having been formed on the land at the same period of time. As a result of investigating area ratio of tetrahedron (A site) and octahedron (B site) regarding magnetite in samples, it was turn out to be 0.22~0.55 less than 2.

Sintering Property of Ti-Te LTCC Materials with SnO Additions (SnO 첨가에 따른 Ti-Te LTCC 재료의 소결 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.169-170
    • /
    • 2008
  • In this study, low temperature sintering property of the $0.6TiTe_3O_8-0.4MgTiO_3$ ceramics with sintering adds were investigated for LTCC application which enable to cofiring with Ag electrode. $TiTe_3O_8$ mixed with $MgTiO_3$ to improve the temperature property. In the X-ray diffraction patterns, the columbite structure of $TiTe_3O_8$ phase and ilmenite structure of $MgTiO_3$ phase were coexisted in all specimens. In the case of SnO addition, the bulk density and dielectric constant were increased but quality factor was decreased with amount of SnO additions. The TCRF of the $0.6TiTe_3O_8-0.4MgTiO_3$+xwt%SnO ceramics were shifted to negative direction. The dielectric constant, quality factor and TCRF of the $0.6TiTe_3O_8-0.4MgTiO_3$ ceramics with 2.5wt% addition of SnO sintered at $830^{\circ}C$ for 1hr were 29.86, 35,800 GHz, -0.58 ppm/$^{\circ}C$, respectively.

  • PDF

Microwave Dielectric Properties of the (l-x)$TiTe_3O_{8}$-x$MgTiO_3$ Ceramics with Sintering Temperature (소결온도에 따른 (l-x)$TiTe_3O_{8}$-x$MgTiO_3$ 세라믹스의 마이크로파 유전 특성)

  • 최의선;김재식;이문기;류기원;이영희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.9
    • /
    • pp.459-463
    • /
    • 2004
  • In this study, the (l-x)$TiTe_3O_{8}$-x$MgTiO_3$ ceramics were investigated to obtain the improved dielectric properties of a high temperature stability and a sintering temperature of less than $900^{\circ}C$ which was necessary for the LTCC. According to the X-ray diffraction patterns of the (l-x)$TiTe_3O_{8}$-x$MgTiO_3$(x=0∼1) ceramics, the columbite structure of $TiTe_3O_{8}$ and ilmenite structure of $MgTiO_3$ were coexisted. Increasing the $MgTiO_3$ mole ratio(x), the density and dielectric constant were decreased and temperature coefficient of resonant frequency was moved to the negative direction and the quality factor was increased. In the case of the 0.6$TiTe_3O_{8}$-0.4$MgTiO_3$ ceramics sintered at $830^{\circ}C$ for 3hr., the microwave dielectric properties were $\varepsilon_{\gamma}$=29.3, Q${\times}$$f_{\gamma}$=39.600GHz and $\tau$$_{f}$=+9.3ppm/$^{\circ}C$.

Microwave Dielectric Properties of the $MgTiO_3$ Ceramics with $SrTiO_3$ ($SrTiO_3$ 첨가에 따른 $MgTiO_3$ 세라믹스의 마이크로파 유전특성)

  • Bae, Koung-In;Park, In-Gil;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.473-475
    • /
    • 2000
  • The (1-x)$MgTiO_3-xSrTiO_3$$(x=0.03{\sim}0.04)$ ceramics were fabricated by conventional mixed oxide method. The structural properties and microwave dielectric properties were investigated by XRD, SEM and HP8757D network analyzer. In the $0.96MgTiO_3-0.04SrTiO_3$ ceramics, the perovskite structure $SrTiO_3$ and ilmenite structure $MgTiO_3$ phases were coexisted. The dielectric constant(${\varepsilon}_r$ and temperature coefficient of resonant frequency(${\tau}_f$) was increased with addition of $SrTiO_3$. In the case of $0.96MgTiO_3-0.04SrTiO_3$ ceramics sintered at $1325^{\circ}C$, the dielectric constant, quality factor and temperature coefficient of resonant frequency were 20.13, 7956(at 7.27GHz), +1.7568ppm/$^{\circ}C$, respectively.

  • PDF

Low Temperature Sintering Properties of Ti-Te System Ceramics for LTCC Application (LTCC응용을 위한 Ti-Te계 세라믹스의 저온소결 특성)

  • Kim, Jae-Sik;Ryu, Ki-Won;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1299-1300
    • /
    • 2007
  • In this study, low temperature sintering property of (1-x)$TiTe_{3}O_{8}-xMgTiO_{3}$ ceramics were investigated for LTCC application which enable to cofiring with Ag electrode. $TiTe_{3}O_{8}$ mixed with $MgTiO_3$ to improve the temperature property. In the X-ray diffraction patterns, the columbite structure of $TiTe_{3}O_{8}$ phase and ilmenite structure of $MgTiO_3$ phase were coexisted in all specimens. The bulk densities and dielectric constants were decreased with increasing of $MgTiO_3$. However, the quality factors were increased with $MgTiO_3$ addition. Also, TCRF was shifted to negative(-) direction. Microwave dielectric properties of (1-x)$TiTe_{3}O_{8}-xMgTiO_{3}$ ceramics had similar tendency with calculated value by the mixing rule. The dielectric constant, quality factor and TCRF of $05TiTe_{3}O_{8}-0.5MgTiO_{3}$ ceramics sintered at $830^{\circ}C$ for 3h. were 26.19, 43,290GHz and $-3.9ppm/^{\circ}C$, respectively.

  • PDF

Photoelectron Spectroscopy Study of the Semiconductor Electrode Nanomaterials for the Dye Synthesized Solar Cell (염료감응 태양전지 전극용 반도체 나노 물질의 광전자분광 연구)

  • Kim, Hyun Woo;Lee, Eunsook;Kim, D.H.;Seong, Seungho;Kang, J.-S.;Moon, S.Y.;Shin, Yuju
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.156-161
    • /
    • 2015
  • The electronic structures of the potential candidate semiconductor nanoparticles for dye-sensitized solar cell (DSSC), such as $ZnSnO_3$ and $Zn_2SnO_4$, have been investigated by employing X-ray photoemission spectroscopy (XPS). The measured X-ray diffraction patterns show that $ZnSnO_3$ and $Zn_2SnO_4$ samples have the single-phase ilmenite-type structure and the inverse spinel structure, respectively. The measured Zn 2p and Sn 3d core-level XPS spectra reveal that the valence states of Zn and Sn ions are divalent (Zn 2+) and tetravalent (Sn 4+), respectively, in both $ZnSnO_3$ and $Zn_2SnO_4$. On the other hand, the shallow core-level measurements show that the binding energies of Sn 4d and Zn 3d core levels in $ZnSnO_3$ are lower than those in $Zn_2SnO_4$. This work provides the information on the valence states of Zn and Sn ions and their chemical bonding in $ZnSnO_3$ and $Zn_2SnO_4$.