• 제목/요약/키워드: Illumina Sequencing

검색결과 158건 처리시간 0.029초

A case of interdigitating dendritic cell sarcoma studied by whole-exome sequencing

  • Hong, Ki Hwan;Song, Soyoung;Shin, Wonseok;Kang, Keunsoo;Cho, Chun?Sung;Hong, Yong Tae;Han, Kyudong;Moon, Jeong Hwan
    • Genes and Genomics
    • /
    • 제40권12호
    • /
    • pp.1279-1285
    • /
    • 2018
  • Interdigitating dendritic cell sarcoma (IDCS) is an aggressive neoplasm and is an extremely rare disease, with a challenging diagnosis. Etiology of IDCS is also unknown and most studies with only case reports. In our case, immunohistochemistry showed that the tumor cells were positive for S100, CD45, and CD68, but negative for CD1a and CD21. This study aimed to investigate the causative factors of IDCS by sequencing the protein-coding regions of IDCS. We performed whole-exome sequencing with genomic DNA from blood and sarcoma tissue of the IDCS patient using the Illumina Hiseq 2500 platform. After that, we conducted Sanger sequencing for validation of sarcoma-specific variants and gene ontology analysis using DAVID bioinformatics resources. Through comparing sequencing data of sarcoma with normal blood, we obtained 15 nonsynonymous single nucleotide polymorphisms (SNPs) as sarcoma-specific variants. Although the 15 SNPs were not validated by Sanger sequencing due to tumor heterogeneity and low sensitivity of Sanger sequencing, we examined the function of the genes in which each SNP is located. Based on previous studies and gene ontology database, we found that POLQ encoding DNA polymerase theta enzyme and FNIP1 encoding tumor suppressor folliculin-interacting protein might have contributed to the IDCS. Our study provides potential causative genetic factors of IDCS and plays a role in advancing the understanding of IDCS pathogenesis.

Genome analysis of Bacteroides sp. CACC 737 isolated from feline for its potential application

  • Kim, Jung-Ae;Jung, Min Young;Kim, Dae-Hyuk;Kim, Yangseon
    • Journal of Animal Science and Technology
    • /
    • 제62권6호
    • /
    • pp.952-955
    • /
    • 2020
  • Bacteroides sp. CACC 737 was isolated from a feline, and its potential probiotic properties were characterized using functional genome analysis. Whole-genome sequencing was performed using the PacBio RSII and Illumina HiSeq platforms. The complete genome of strain CACC 737 contained 4.6 Mb, with a guanine (G) + cytosine (C) content of 45.8%, six cryptic plasmids, and extracellular polysaccharide gene as unique features. The strain was beneficial to animal health when consumed as feed, for example, for ameliorating immunological dysfunctions and metabolic disorders. The genome information adds to the comprehensive understanding of Bacteroides sp. and suggests potential animal-related industrial applications for this strain.

Whole Genome Sequencing and Gene Prediction of Cynodon transvaalensis

  • Sol Ji Lee;Chang soo Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.237-237
    • /
    • 2022
  • Cynodon transvaalensis belongs to the warm-season grasses and is one of the economically and ecologically important crops. Cynodon species with high heterozygosity are difficult to assemble, so genome research has not been actively conducted. In this study, hybrid assembly was performed by sequencing with Illumina and PacBio. As a result of the assembly, the number of scaffolds and the length of N50 were 1,392, 928 kb, respectively. The completeness of the assembly was confirmed by BSUCO at 98.3%. In addition, as a result of estimating the size of the assembled genome by K-mer analysis (k=25), it was approximately ~413 Mb. A total of 37,060 cds sequences were annotated in the assembled genome, and their functions were identified through blast. After that, we try to complete the assembled genome into a pseudochromosome-level genome through Hi-C technology. These results will not only help to understand the complex genome composition of african bermudagrass, but also provide a resource for genomic and evolutionary studies of grass and other plant species.

  • PDF

Caution and Curation for Complete Mitochondrial Genome from Next-Generation Sequencing: A Case Study from Dermatobranchus otome (Gastropoda, Nudibranchia)

  • Do, Thinh Dinh;Choi, Yisoo;Jung, Dae-Wui;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • 제36권4호
    • /
    • pp.336-346
    • /
    • 2020
  • Mitochondrial genome is an important molecule for systematic and evolutionary studies in metazoans. The development of next-generation sequencing (NGS) technique has rapidly increased the number of mitogenome sequences. The process of generating mitochondrial genome based on NGS includes different steps, from DNA preparation, sequencing, assembly, and annotation. Despite the effort to improve sequencing, assembly, and annotation methods of mitogenome, the low quality and/or quantity sequence in the final map can still be generated through the work. Therefore, it is necessary to check and curate mitochondrial genome sequence after annotation for proofreading and feedback. In this study, we introduce the pipeline for sequencing and curation for mitogenome based on NGS. For this purpose, two mitogenome sequences of Dermatobranchus otome were sequenced by Illumina Miseq system with different amount of raw read data. Generated reads were targeted for assembly and annotation with commonly used programs. As abnormal repeat regions present in the mitogenomes after annotation, primers covering these regions were designed and conventional PCR followed by Sanger sequencing were performed to curate the mitogenome sequences. The obtained sequences were used to replace the abnormal region. Following the replacement, each mitochondrial genome was compared with the other as well as the sequences of close species available on the Genbank for confirmation. After curation, two mitogenomes of D. otome showed a typically circular molecule with 14,559 bp in size and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes. The phylogenetic tree revealed a close relationship between D. otome and Tritonia diomea. The finding of this study indicated the importance of caution and curation for the generation of mitogenome from NGS.

Two novel mutations in ALDH18A1 and SPG11 genes found by whole-exome sequencing in spastic paraplegia disease patients in Iran

  • Komachali, Sajad Rafiee;Siahpoosh, Zakieh;Salehi, Mansoor
    • Genomics & Informatics
    • /
    • 제20권3호
    • /
    • pp.30.1-30.9
    • /
    • 2022
  • Hereditary spastic paraplegia is a not common inherited neurological disorder with heterogeneous clinical expressions. ALDH18A1 (located on 10q24.1) gene-related spastic paraplegias (SPG9A and SPG9B) are rare metabolic disorders caused by dominant and recessive mutations that have been found recently. Autosomal recessive hereditary spastic paraplegia is a common and clinical type of familial spastic paraplegia linked to the SPG11 locus (locates on 15q21.1). There are different symptoms of spastic paraplegia, such as muscle atrophy, moderate mental retardation, short stature, balance problem, and lower limb weakness. Our first proband involves a 45 years old man and our second proband involves a 20 years old woman both are affected by spastic paraplegia disease. Genomic DNA was extracted from the peripheral blood of the patients, their parents, and their siblings using a filter-based methodology and quantified and used for molecular analysis and sequencing. Sequencing libraries were generated using Agilent SureSelect Human All ExonV7 kit, and the qualified libraries are fed into NovaSeq 6000 Illumina sequencers. Sanger sequencing was performed by an ABI prism 3730 sequencer. Here, for the first time, we report two cases, the first one which contains likely pathogenic NM_002860: c.475C>T: p.R159X mutation of the ALDH18A1 and the second one has likely pathogenic NM_001160227.2: c.5454dupA: p.Glu1819Argfs Ter11 mutation of the SPG11 gene and also was identified by the whole-exome sequencing and confirmed by Sanger sequencing. Our aim with this study was to confirm that these two novel variants are direct causes of spastic paraplegia.

Effects of Rubus coreanus byproducts on intestinal microbiota and the immune modulation

  • Yu, Da Yoon;Kim, Sung Hak;Kim, Jeong A;Kim, In Sung;Moon, Yang Soo;Lee, Sang Suk;Park, Hwa Chun;Jung, Jong Hyun;Chung, Yi Hyung;Shin, Dae Keun;Nam, Ki Chang;Choi, In Soon;Cho, Kwang Keun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권3호
    • /
    • pp.429-438
    • /
    • 2018
  • Objective: Although the efficacy of Rubus coreanus (RC) byproducts as a feed additive has been recognized, its effects on intestinal microorganisms and the immune system are still unknown. Methods: Six-week-old male rats were treated with 0.5% RC (T1), 1.0% RC (T2), and 1.5% RC (T3) for 4 weeks. Results: We found that treatment with RC byproducts significantly increased the daily gain of body weight and feed intake. Treg-cell differentiation was enhanced in the mesenteric lymph nodes and spleen from the rats fed with RC byproducts. Illumina sequencing showed that bacteria in the phylum Firmicutes decreased and while those in the phylum Bacteroidetes increased in RC-treated groups. Particularly, the pathogenic microorganisms in the family Peptococcaceae decreased, and the non-pathogenic families Lachnospiraceae and S24-7 increased. Quantitative polymerase chain reaction analysis showed that the RC byproducts increased the lactic acid bacteria Bifidobacterium spp., Oscillospira spp., Leuconostoc citreum, and Weissella cibaria in a concentration-dependent manner. Conclusion: RC byproducts may be effective in immunomodulation by affecting intestinal microorganisms.

The complete chloroplast genome sequence of Avena sterilis L. using Illumina sequencing

  • Raveendar, Sebastin;Lee, Gi-An;Lee, Kyung Jun;Shin, Myoung-Jae;Cho, Yang-Hee;Ma, Kyung-Ho;Chung, Jong-Wook;Lee, Jung-Ro
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.139-139
    • /
    • 2017
  • The complete chloroplast genome sequence of Avena sterilis L., a dominant wild oat species in the family Poaceae, is first reported in this study. The complete cp genome sequence of A. sterilis is 135,887 bp in length with 38.5% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeats (21, 603 bp) separated by a small single-copy region (12,575 bp) and a large single-copy region (80,106). The A. sterilis cp genome encodes 111 unique genes, 76 of which are protein-coding genes, 4 rRNA genes, 30 tRNA genes and 18 duplicated genes in the inverted repeat region. Nine genes contain one or two introns. Pair-wise alignments of cp genome were performed for genome-wide comparison. This newly determined cp genome sequence of A. sterilis will provide valuable information for the future breeding programs of valuable cereal crops in the family Poaceae.

  • PDF

Effects of Lactobacillus curvatus and Leuconostoc mesenteroides on Suan Cai Fermentation in Northeast China

  • Yang, Hongyan;Wu, Hao;Gao, Lijuan;Jia, Hongbai;Zhang, Yuan;Cui, Zongjun;Li, Yuhua
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2148-2158
    • /
    • 2016
  • To investigate the effects of Lactobacillus curvatus and Leuconostoc mesenteroides on suan cai (pickled Chinese cabbage) fermentation, L. curvatus and/or Ln. mesenteroides were inoculated into suan cai. Physicochemical indexes were measured, and the microbial dynamics during the fermentation were analyzed by Illumina MiSeq sequencing and quantitative polymerase chain reaction (qPCR). The results showed that inoculation with lactic acid bacteria (LAB) lowered the pH of the fermentation system more rapidly. The decrease in water-soluble carbohydrates in the inoculated treatments occurred more rapidly than in the control. The LAB counts in the control were lower than in other inoculated treatments during the first 12 days of fermentation. According to the Illumina MiSeq sequencing analyses, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Fusobacteria, and Verrucomicrobia were present in the fermentations, along with other unclassified bacteria. Generally, Firmicutes was predominant during the fermentation in all treatments. At the genus level, 16 genera were detected. The relative abundance of Lactobacillus in all inoculated treatments was higher than in the control. The relative abundance of Lactobacillus in the treatments containing L. curvatus was higher than in the Ln. mesenteroides-only treatment. The relative abundance of Leuconostoc in the Ln. mesenteroides-containing treatments increased continuously throughout the fermentation. Leuconostoc was highest in the Ln. mesenteroides-only treatment. According to the qPCR results, L. curvatus and/or Ln. mesenteroides inoculations could effectively inhabit the fermentation system. L. curvatus dominated the fermentation in the inoculated treatments.

Penicillium Diversity from Intertidal Zone in Korea

  • Park, Myung Soo;Lee, Seobihn;Oh, Seung-Yoon;Lim, Young Woon
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.11-11
    • /
    • 2016
  • Penicillium species are commonly isolated from various outdoor and indoor environments, including marine environments such as sponges, algae and sand. Penicillium is especially important because numerous bioactive compounds have been isolated. Penicillium was the most common species in intertidal zone in Korea, however the diversity and ecological roles of Penicillium in intertidal zone are not clarified. We explored diversity and ecological roles of marine-derived Penicillium from tidal flat and sea sand in Korea. The diversity of marine-derived Penicillium from Korea was investigated using both culture-dependent and culture-independent approach by ${\beta}$-tubulin sequence. In addition, we evaluated optimal temperature, halo-tolerance, and enzyme activity of Penicillium strains, such as extracellular alginase, endoglucanase, ${\beta}$-glucosidase, and protease. For culture-dependent approach, a total of 182 strains of 62 Penicillium species were isolated, with 53 species being identified. The most common species was Penicillium oxalicum, followed by P. crustosum, P. brasilianum, P. koreense, and P. griseofulvum. Species richness and composition were not significantly different by season, substrates, and seaside. For culture-independent approach using Illumina sequencing, 73 OTUSs were detected. The most frequently observed species was P. antarcticum, followed by P. koreense, P. crustosum, and P. brevicompactum. Diversity of Penicillium was higher during winter season than during summer season and in western sea than in southern sea, respectively. Community structure was significantly different by season and sea side. 52 species were detected by both methods. Unique species were isolated from each of methods - 10 from culture methods and 21 from Illumina sequencing. Furthermore, salinity adaption of the Penicillium varied depending on species. Many Penicillium species showed endoglucanase, ${\beta}$-glucosidase, and protease activity. Some species including P. paneum and P. javanicum degraded the polycyclic aromatic hydrocarbons. Thus, our results demonstrate that intertidal zone in Korea harbors diverse Penicillium community and marine-derived Penicillium play important ecological roles as decomposers of organic material in marine environments.

  • PDF

Fungal Community Analyses of Endophytic Fungi from Two Oak Species, Quercus mongolica and Quercus serrata, in Korea

  • Nguyen, Manh Ha;Shin, Keum Chul;Lee, Jong Kyu
    • Mycobiology
    • /
    • 제49권4호
    • /
    • pp.385-395
    • /
    • 2021
  • Fungal endophytes have been recorded in various plant species with a richness of diversity, and their presence plays an essential role in host plant protection against biotic and abiotic stresses. This study applied the Illumina MiSeq sequencing platform based on the amplification of fungal ribosomal ITS2 region to analyze fungal endophytic communities of two oak species (Quercus mongolica and Q. serrata) with different oak wilt disease susceptibilities in Korea. The results showed a total of 230,768 sequencing reads were obtained and clustered at a 97% similarity threshold into 709 operational taxonomic units (OTUs). The OTUs of Q. serrata were higher than that of Q. mongolica with the number of 617 OTUs and 512 OTUs, respectively. Shannon index also showed that Q. serrata had a significantly higher level of fungal diversity than Q. mongolica. Total of OTUs were assigned into 5 fungal phyla, 17 classes, 60 orders, 133 families, 195 genera, and 280 species. Ascomycota was the dominant phylum with 75.11% relative abundance, followed by Basidiomycota with 5.28%. Leptosillia, Aureobasidium and Acanthostigma were the most abundant genera detected in Q. serrata with the average relative abundance of 2.85, 2.76, and 2.19%, respectively. On the other hand, Peltaster, Cladosporium and Monochaetia were the most common genera detected in Q. mongolica with the average relative abundance of 4.83, 3.03, and 2.87%, respectively. Our results indicated that fungal endophytic communities were significantly different between two oak species and these differences could influence responses of host trees to oak wilt disease caused by Raffaelea quercus-mongolicae.