• 제목/요약/키워드: Illumina

검색결과 271건 처리시간 0.022초

Transcriptome analysis of a medicinal plant, Pistacia chinensis

  • Choi, Ki-Young;Park, Duck Hwan;Seong, Eun-Soo;Lee, Sang Woo;Hang, Jin;Yi, Li Wan;Kim, Jong-Hwa;Na, Jong-Kuk
    • Journal of Plant Biotechnology
    • /
    • 제46권4호
    • /
    • pp.274-281
    • /
    • 2019
  • Pistacia chinensis Bunge has not only been used as a medicinal plant to treat various illnesses but its young shoots and leaves have also been used as vegetables. In addition, P. chinensis is used as a rootstock for Pistacia vera (pistachio). Here, the transcriptome of P. chinensis was sequenced to enrich genetic resources and identify secondary metabolite biosynthetic pathways using Illumina RNA-seq methods. De novo assembly resulted in 18,524 unigenes with an average length of 873 bp from 19 million RNA-seq reads. A Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation tool assigned KO (KEGG orthology) numbers to 6,553 (36.2%) unigenes, among which 4,061 unigenes were mapped into 391 different metabolic pathways. For terpenoid backbone and carotenoid biosynthesis pathways, 44 and 22 unigenes encode enzymes corresponding to 30 and 16 entries, respectively. Twenty-two unigenes encode proteins for 16 entries of the carotenoid biosynthesis pathway. As for the phenylpropanoid and flavonoid biosynthesis pathways, 63 and 24 unigenes were homologous to 17 and 14 entry proteins, respectively. Mining of simple sequence repeat identified 2,599 simple sequence repeats from P. chinensis unigenes. The results of the present study provide a valuable resource for in-depth studies on comparative and functional genomics to unravel the underlying mechanisms of the medicinal properties of Pistacia L.

Whole Genome Resequencing of Heugu (Korean Black Cattle) for the Genome-Wide SNP Discovery

  • Choi, Jung-Woo;Chung, Won-Hyong;Lee, Kyung-Tai;Choi, Jae-Won;Jung, Kyoung-Sub;Cho, Yongmin;Kim, Namshin;Kim, Tae-Hun
    • 한국축산식품학회지
    • /
    • 제33권6호
    • /
    • pp.715-722
    • /
    • 2013
  • Heugu (Korea Black Cattle) is one of the indigenous cattle breeds in Korea; however there has been severe lack of genomic studies on the breed. In this study, we report the first whole genome resequencing of Heugu at higher sequence coverage using Illumina HiSeq 2000 platform. More than 153.6 Giga base pairs sequence was obtained, of which 97% of the reads were mapped to the bovine reference sequence assembly (UMD 3.1). The number of non-redundantly mapped sequence reads corresponds to approximately 28.9-fold coverage across the genome. From these data, we identified a total of over six million single nucleotide polymorphisms (SNPs), of which 29.4% were found to be novel using the single nucleotide polymorphism database build 137. Extensive annotation was performed on all the detected SNPs, showing that most of SNPs were located in intergenic regions (70.7%), which is well corresponded with previous studies. Of the total SNPs, we identified substantial numbers of non-synonymous SNPs (13,979) in 5,999 genes, which could potentially affect meat quality traits in cattle. These results provide genome-wide SNPs that can serve as useful genetic tools and as candidates in searches for phenotype-altering DNA difference implicated with meat quality traits in cattle. The importance of this study can be further pronounced with the first whole genome sequencing of the valuable local genetic resource to be used in further genomic comparison studies with diverse cattle breeds.

한국인 자폐스펙트럼장애와 UROC1 유전자의 연관성 분석 (No Association between Single Nucleotide Polymorphisms in Urocanase Domain Containing 1 (UROC1) and Autism Spectrum Disorders (ASDs) in the Korean Population)

  • 박정원;노명자;남민;방희정;양재원;최경식;김수강;정주호;곽규범
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제23권1호
    • /
    • pp.8-13
    • /
    • 2012
  • Objectives : Urocanase domain containing 1 (UROC1) has never been studied in prior studies on autism spectrum disorders (ASDs). UROC1 causes urocanic aciduria, one of the symptoms of which is mental retardation. The aim of this study was to investigate the association between the UROC1 gene and ASDs in a Korean population. Methods : A total of 258 control and 214 patients with ASD were used as subjects of this study. SNPs selected from UROC1 were genotyped using Illumina Golden-Gate Genotyping assay with VeraCode$^{(R)}$ technology. Statistical analysis was performed using SAS and Plink software. Results : We found no association of the 12 SNPs in the UROC1 gene with ASDs in a Korean population. Conclusion : Our study suggests that the 12 SNPs (11 SNPs and 1 SNP in the intron and 3'UTR region, respectively) in the UROC1 were not associated with ASDs in a Korean population. Further study on the exon region of UROC1 is needed.

Estimation of Effective Population Size in the Sapsaree: A Korean Native Dog (Canis familiaris)

  • Alam, M.;Han, K.I.;Lee, D.H.;Ha, J.H.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권8호
    • /
    • pp.1063-1072
    • /
    • 2012
  • Effective population size ($N_e$) is an important measure to understand population structure and genetic variability in animal species. The objective of this study was to estimate $N_e$ in Sapsaree dogs using the information of rate of inbreeding and genomic data that were obtained from pedigree and the Illumina CanineSNP20 (20K) and CanineHD (170K) beadchips, respectively. Three SNP panels, i.e. Sap134 (20K), Sap60 (170K), and Sap183 (the combined panel from the 20K and 170K), were used to genotype 134, 60, and 183 animal samples, respectively. The $N_e$ estimates based on inbreeding rate ranged from 16 to 51 about five to 13 generations ago. With the use of SNP genotypes, two methods were applied for $N_e$ estimation, i.e. pair-wise $r^2$ values using a simple expectation of distance and $r^2$ values under a non-linear regression with respective distances assuming a finite population size. The average pair-wise $N_e$ estimates across generations using the pairs of SNPs that were located within 5 Mb in the Sap134, Sap60, and Sap183 panels, were 1,486, 1,025 and 1,293, respectively. Under the non-linear regression method, the average $N_e$ estimates were 1,601, 528, and 1,129 for the respective panels. Also, the point estimates of past $N_e$ at 5, 20, and 50 generations ago ranged between 64 to 75, 245 to 286, and 573 to 646, respectively, indicating a significant $N_e$ reduction in the last several generations. These results suggest a strong necessity for minimizing inbreeding through the application of genomic selection or other breeding strategies to increase $N_e$, so as to maintain genetic variation and to avoid future bottlenecks in the Sapsaree population.

Accurate Estimation of Effective Population Size in the Korean Dairy Cattle Based on Linkage Disequilibrium Corrected by Genomic Relationship Matrix

  • Shin, Dong-Hyun;Cho, Kwang-Hyun;Park, Kyoung-Do;Lee, Hyun-Jeong;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권12호
    • /
    • pp.1672-1679
    • /
    • 2013
  • Linkage disequilibrium between markers or genetic variants underlying interesting traits affects many genomic methodologies. In many genomic methodologies, the effective population size ($N_e$) is important to assess the genetic diversity of animal populations. In this study, dairy cattle were genotyped using the Illumina BoviveHD Genotyping BeadChips for over 777,000 SNPs located across all autosomes, mitochondria and sex chromosomes, and 70,000 autosomal SNPs were selected randomly for the final analysis. We characterized more accurate linkage disequilibrium in a sample of 96 dairy cattle producing milk in Korea. Estimated linkage disequilibrium was relatively high between closely linked markers (>0.6 at 10 kb) and decreased with increasing distance. Using formulae that related the expected linkage disequilibrium to $N_e$, and assuming a constant actual population size, $N_e$ was estimated to be approximately 122 in this population. Historical $N_e$, calculated assuming linear population growth, was suggestive of a rapid increase $N_e$ over the past 10 generations, and increased slowly thereafter. Additionally, we corrected the genomic relationship structure per chromosome in calculating $r^2$ and estimated $N_e$. The observed $N_e$ based on $r^2$ corrected by genomics relationship structure can be rationalized using current knowledge of the history of the dairy cattle breeds producing milk in Korea.

Effects of husbandry systems and Chinese indigenous chicken strain on cecum microbial diversity

  • Dong, Xiuxue;Hu, Bing;Wan, Wenlong;Gong, Yanzhang;Feng, Yanping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권10호
    • /
    • pp.1610-1616
    • /
    • 2020
  • Objective: This study was to evaluate the effect of husbandry systems and strains on cecum microbial diversity of Jingyang chickens under the same dietary conditions. Methods: A total of 320 laying hens (body weight, 1.70±0.15 kg; 47 weeks old) were randomly allocated to one of the four treatments: i) Silver-feathered hens in enrichment cages (SEC) with an individual cage (70×60×75 cm), ii) Silver-feathered hens in free range (SFR) with the stocking density of 1.5 chickens per ten square meters, iii) Gold-feathered hens in enrichment cages (GEC), iv) Gold-feathered hens in free range (GFR). The experiment lasted 8 weeks and the cecum fecal samples were collected for 16S rDNA high throughput sequencing at the end of experiment. Results: i) The core microbiota was composed of Bacteroidetes (49% to 60%), Firmicutes (21% to 32%) and Proteobacteria (2% to 4%) at the phylum level. ii) The core bacteria were Bacteroides (26% to 31%), Rikenellaceae (9% to 16%), Parabacteroides (2% to 5%) and Lachnoclostridium (2% to 6%) at the genus level. iii) The indexes of operational taxonomic unit, Shannon, Simpson and observed species were all higher in SFR group than in SEC group while in GEC group than in GFR group, with SFR group showing the greatest diversity of cecum microorganisms among the four groups. iv) The clustering result was consistent with the strain classification, with a similar composition of cecum bacteria in the two strains of laying hens. Conclusion: The core microbiota were not altered by husbandry systems or strains. The free-range system increased the diversity of cecal microbes only for silver feathered hens. However, the cecum microbial composition was similar in two strain treatments under the same dietary conditions.

Targeted Resequencing of 30 Genes Improves the Detection of Deleterious Mutations in South Indian Women with Breast and/or Ovarian Cancers

  • Rajkumar, Thangarajan;Meenakumari, Balaiah;Mani, Samson;Sridevi, Veluswami;Sundersingh, Shirley
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5211-5217
    • /
    • 2015
  • Background: We earlier used PCR-dHPLC for mutation analysis of BRCA1 and BRCA2. In this article we report application of targeted resequencing of 30 genes involved in hereditary cancers. Materials and Methods: A total of 91 patient samples were analysed using a panel of 30 genes in the Illumina HiScan SQ system. CLCBio was used for mapping reads to the reference sequences as well as for quality-based variant detection. All the deleterious mutations were then reconfirmed using Sanger sequencing. Kaplan Meier analysis was conducted to assess the effect of deleterious mutations on disease free and overall survival. Results: Seventy four of the 91 samples had been run earlier using the PCR-dHPLC and no deleterious mutations had been detected while 17 samples were tested for the first time. A total of 24 deleterious mutations were detected, 11 in BRCA1, 4 in BRCA2, 5 in p53, one each in RAD50, RAD52, ATM and TP53BP1. Some 19 deleterious mutations were seen in patients who had been tested earlier with PCR-dHPLC [19/74] and 5/17 in the samples tested for the first time, Together with our earlier detected 21 deleterious mutations in BRCA1 and BRCA2, we now had 45 mutations in 44 patients. BRCA1c.68_69delAG;p.Glu23ValfsX16 mutation was the most common, seen in 10/44 patients. Kaplan Meier survival analysis did not show any difference in disease free and overall survival in the patients with and without deleterious mutations. Conclusions: The NGS platform is more sensitive and cost effective in detecting mutations in genes involved in hereditary breast and/or ovarian cancers.

Genome-wide Analysis of Aberrant DNA Methylation for Identification of Potential Biomarkers in Colorectal Cancer Patients

  • Fang, Wei-Jia;Zheng, Yi;Wu, Li-Ming;Ke, Qing-Hong;Shen, Hong;Yuan, Ying;Zheng, Shu-Sen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.1917-1921
    • /
    • 2012
  • Background: Colorectal cancer is one of the leading causes of mortality worldwide. Genome wide analysis studies have identified sequence mutations causing loss-of-function that are associated with disease occurrence and severity. Epigenetic modifications, such DNA methylation, have also been implicated in many cancers but have yet to be examined in the East Asian population of colorectal cancer patients. Methods: Biopsies of tumors and matched non-cancerous tissue types were obtained and genomic DNA was isolated and subjected to the bisulphite conversion method for comparative DNA methylation analysis on the Illumina Infinium HumanMethylation27 BeadChip. Results: Totals of 258 and 74 genes were found to be hyper- and hypo-methylated as compared to the individual's matched control tissue. Interestingly, three genes that exhibited hypermethylation in their promoter regions, CMTM2, ECRG4, and SH3GL3, were shown to be significantly associated with colorectal cancer in previous studies. Using heatmap cluster analysis, eight hypermethylated and 10 hypomethylated genes were identified as significantly differentially methylated genes in the tumour tissues. Conclusions: Genome-wide methylation profiling facilitates rapid and simultaneous analysis of cancerous cells which may help to identify methylation markers with high sensitivity and specificity for diagnosis and prognosis. Our results show the promise of the microarray technology in identification of potential methylation biomarkers for colorectal cancers.

Genome re-sequencing to identify single nucleotide polymorphism markers for muscle color traits in broiler chickens

  • Kong, H.R.;Anthony, N.B.;Rowland, K.C.;Khatri, B.;Kong, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.13-18
    • /
    • 2018
  • Objective: Meat quality including muscle color in chickens is an important trait and continuous selective pressures for fast growth and high yield have negatively impacted this trait. This study was conducted to investigate genetic variations responsible for regulating muscle color. Methods: Whole genome re-sequencing analysis using Illumina HiSeq paired end read method was performed with pooled DNA samples isolated from two broiler chicken lines divergently selected for muscle color (high muscle color [HMC] and low muscle color [LMC]) along with their random bred control line (RAN). Sequencing read data was aligned to the chicken reference genome sequence for Red Jungle Fowl (Galgal4) using reference based genome alignment with NGen program of the Lasergene software package. The potential causal single nucleotide polymorphisms (SNPs) showing non-synonymous changes in coding DNA sequence regions were chosen in each line. Bioinformatic analyses to interpret functions of genes retaining SNPs were performed using the ingenuity pathways analysis (IPA). Results: Millions of SNPs were identified and totally 2,884 SNPs (1,307 for HMC and 1,577 for LMC) showing >75% SNP rates could induce non-synonymous mutations in amino acid sequences. Of those, SNPs showing over 10 read depths yielded 15 more reliable SNPs including 1 for HMC and 14 for LMC. The IPA analyses suggested that meat color in chickens appeared to be associated with chromosomal DNA stability, the functions of ubiquitylation (UBC) and quality and quantity of various subtypes of collagens. Conclusion: In this study, various potential genetic markers showing amino acid changes were identified in differential meat color lines, that can be used for further animal selection strategy.

Illumina MiSeq sequencing reveals the effects of grape seed procyanidin on rumen archaeal communities in vitro

  • Zhang, Hua;Tong, Jinjin;Wang, Zun;Xiong, Benhai;Jiang, Linshu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권1호
    • /
    • pp.61-68
    • /
    • 2020
  • Objective: The present study explored the effects of grape seed procyanidin extract (GSPE) on rumen fermentation, methane production and archaeal communities in vitro. Methods: A completely randomized experiment was conducted with in vitro incubation in a control group (CON, no GSPE addition; n = 9) and the treatment group (GSPE, 1 mg/bottle GSPE, 2 g/kg dry matter; n = 9). The methane and volatile fatty acid concentrations were determined using gas chromatography. To explore methane inhibition after fermentation and the response of the ruminal microbiota to GSPE, archaeal 16S rRNA genes were sequenced by MiSeq high-throughput sequencing. Results: The results showed that supplementation with GSPE could significantly inhibit gas production and methane production. In addition, GSPE treatment significantly increased the proportion of propionate, while the acetate/propionate ratio was significantly decreased. At the genus level, the relative abundance of Methanomassiliicoccus was significantly increased, while the relative abundance of Methanobrevibacter decreased significantly in the GSPE group. Conclusion: In conclusion, GSPE is a plant extract that can reduce methane production by affecting the structures of archaeal communities, which was achieved by a substitution of Methanobrevibacter with Methanomassiliicoccus.