• Title/Summary/Keyword: Illite

Search Result 381, Processing Time 0.026 seconds

The effect of hydrated lime on the petrography and strength characteristics of Illite clay

  • Rastegarnia, Ahmad;Alizadeh, Seyed Mehdi Seyed;Esfahani, Mohammad Khaleghi;Amini, Omid;Utyuzh, Anatolij Sergeevich
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • In this research, soil samples of the Kerman sedimentary basin, Iran, were investigated through laboratory tests such as petrography (Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF) and X-Ray Diffraction (XRD)), physical and mechanical characteristics tests. The soil in this area is dominantly CL. The petrography results showed that the dominant clay mineral is Illite. This soil has made some problems in the earth dams due to the low shear strength. In this study, a set of samples were prepared by adding different amounts of lime. Next, the petrography and strength tests at the optimum moisture content were performed. The results of SEM analysis showed substantial changes in the soil structure after the addition of lime. The primary structure was porous and granular that was changed to a uniform and solid after the lime was added. According to XRD results, dominant mineral in none stabilized soil and stabilized soil are Illite and calcite, respectively. The pozzolanic reaction resulted in the reduction of clay minerals in the stabilized samples and calcite was known as the soil hardener material that led to an increase in soil strength. An increase in the hydrated lime leads to a decrease in their maximum dry unit weight and an increase in their optimum moisture content. Furthermore, increasing the hydrated lime content enhanced the Unconfined Compressive Strength (UCS) and soil's optimum moisture. An increase in the strength is significantly affected by the curing time and hydrated lime contents, as the maximum compressive strength is achieved at 7% hydrated lime. Moreover, the maximum increase in the California Bearing Ratio (CBR) achieved in clay soils mixed with 8% hydrated lime.

Selection and Technical Development for Seed Pelleting Material of Codonopsis lanceolata Trautv (더덕 종자의 펠렛팅을 위한 소재 탐색 및 기술개발)

  • Choi, Kyeong-Gu;Lee, Youn-Su;Cha, Kwang-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.3
    • /
    • pp.130-133
    • /
    • 2006
  • This study was conducted to select Codonopsis lanceolata seed's new pelleting particulate materials and adhesives. Different adhesives (Polyvinyl alcohol (PVA), Carboxymethyl cellulose (CMC), Polyvinyl pyrrolidone (PVP), Xanthan gum (XG), Arabic gum (AG)) and particulate materials (Illite, Diatomite, Pyrophyllite + Illite + Diatomite (PID), Pyrophyllite + Illite + Talc (PIT), Bentonite + Talc (BT)) were tested for seed pelleting. PID for Codonopsis lanceolata seed pelleting appeared to be the best particulate material. Among the pelleting adhesives, PVP was the best adhesive for seed pelleting, and the optimum concentration for germination of pelleting seed was 1 %. Germination rate of the pelleted seeds treated with PID particulate material and PVP adhesive was higher (86.8%) than those of raw seeds (85.5%). $T_{50}$ and MDG of pelleted Codonopsis lanceolata seed required five and eight days at soil moisture content of 50%, respectively.

Hydrothermal Behaviors and Long-term Stability of Bentonitic Buffer Material (벤토나이트 완충재의 열수거동 및 장기건전성 연구)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.145-154
    • /
    • 2007
  • In hydrothermal reaction tests, smectite-to-illite conversion was identified using a domestic bentonite which is favorably considered as a buffer material, and its dependency on various hydrothermal conditions was investigated. The analysis results of the XRD and Si concentration indicated that the smectite-to-illite conversion was a major process of bentonite alteration under the hydrothermal conditions. The temperature, potassium concentration in solution, and pH were observed to significantly affect the smectite-to illite conversion. A model of conversion reaction rate was suggested to evaluate the long-term stability of smectite composing a major constituent of bentonitic buffer. It was expected from the evaluation results that the smectite would keep its integrity for very long disposal time under a normal condition, whitens it might be converted to illite by 50 percent after over $5{\times}10^4$ year of disposal time under a conservative condition and consequently lose its swelling capacity as a buffer material of a repository.

  • PDF

A Comparative Study on Adsorption Behavior of Heavy Metal Elements onto Soil Minerals : Illite, Halloysite, Zeolite, and Goethite (토양광물에 대한 중-금속원소의 흡착특성 비교연구: 일라이트, 할로이사이트, 제올라이트, 및 침철석)

  • 추창오;성익환
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.57-68
    • /
    • 1999
  • Adsorption behavior of metal elements onto soil minerals such as illite, halloysite. zeolite(clinoptilolite). and goethite was comparatively investigated at $25^{\circ}C$ using pollutant water collected from a gold-bearing metal mine. Speciation of solutions reacted was determined by WATEQ4F program, indicating that most of metal ions exist as free ions and that there is little difference in chemical species and their relative abundances between initial soultion and reacted solutions. The experimental data exhibit that the adsorption extent of elements varies depending on mineral types and reaction time. The adsorption process practically took place within one hour, with Fe and As significantly removed from solutions. On the whole, halloysite is regarded as the most effective adsorbent among minerals used in the experiment. Adsorption properties of alkali elements do not consistent with a manner predicted from hydrated ionic radii.

  • PDF

Manufacturing of Eco-Friend Concrete Block using Recycled Materials (순환자원을 활용한 환경친화형 콘크리트 블록 제조)

  • Lee, Jae-Jin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.389-394
    • /
    • 2017
  • The aim of the research is providing the application method of recycled materials to manufacture the low costed eco-friend block at currently operated concrete block plant. In this research, based on the previous research results on three types of slag cement with illite, desulfurized gypsum, and wasted refractory products, the actual block product was manufactured by the currently operated plant facility and evaluated their properties to suggest the optimal proportions. As an experimental results, in aspect of compressive strength, absorption ratio, freezing resistance, and pH, type III slag incorporating 5% desulfurized gypsum with 1% replaced illite as an aggregate could be suggested as am optimal proportion. In additionally, considering the high cost of the illite, it can be considered as an optimal proportion that type III slag incorporating 5% desulfurized gypsum for binder.

Mineralogy of Illite/smectite Mixed-Layer Clays from the Beaufort-Mackenzie Basin, Arctic Canada (카나다 보포트-맥켄지 분지의 일라이트/스멕타이트 혼합층 점토광물 연구)

  • Ko, Jaehong;Hesse, R.
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.327-335
    • /
    • 1995
  • Illite/smectite (I/S) in the Beaufort-Mackenzie Basin, Arctic Canada has been scrutinized on the basis of mineralogical analysis of 215 core and drill-cutting samples from 22 exploratory wells onshore and offshore. I/S in the Beaufort-Mackenzie Basin includes the following four types: random, a mixture of random and ordered, R1-ordered, and R>1-ordered I/S. A mixture of random and ordered I/S occurs in the transitional interval between random and R>1-ordered I/S, and may represent a metastable state in the ordering reaction. A widespread occurrence of the mixture in natural environments suggests that the ordering reaction may be a slow process that results in co-existence of reactants and products. K-saturation experiments show that layer charges of expandable layers in I/S are variable. High-charge expandable layers transform into illite-like layers upon simple K-saturation. K-saturation alters the composition and/or the degree of ordering in I/S, suggesting that illitization in nature can be transformational.

  • PDF

Wall Rock Alteration of the Haenam Pyrophyllite Deposit Related to Felsic Volcanism, Southern Korea (전남 해남지역 해남 납석광상의 변질작용 및 생성환경)

  • Moon, Hi-Soo;Jeong, Seung Woo;Song, Yungoo;Park, Young Surk
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.83-96
    • /
    • 1991
  • Haenam pyrophyllite deposit occurred in the rhyolitic tuff of late Cretaceous age is located in the northern part of Haenam-gun, Jeonranam-do. The ore of the Haenam deposit is predominantly composed of pyrophyllite and illite accompanying such clay minerals as kaolinite, chlorite, and smectite. Pyrophyllite ore at the center of altered mass is often associated with kaolin minerals and high temperature minerals such as corundum, andalusite, and diaspore. On the basis of mineral assemblage the Haenam deposit can be devided into three alteration zones from the center to the margin of the deposit; the pyrophyllite zone, kaolinite zone, and illite zone. All alteration zones are associated with appreciable amounts of chalcedonic quartz. Those mineral assemblages indicate that hydrothermal solution which produced the Haenam deposit is strongly acidic solution with high silica and hydrogen activity and low $SO_4{^{2-}}$ activity. Discriminant analysis shows that $Na_2O$, $K_2O$, and $Al_2O$, of major elements are discriminant elements which classify alteration zones, while in case of trace elements Cr, Ni, and Sr turned out to be discriminant elements in this deposit. According to the mineral assemblage and illite geothermometry, pyrophyllite ore is considered to have been formed at about $240-290^{\circ}C$. K-Ar isotopic age for illite from this deposit indicates that it was formed at much the same age of later stage volcanics in the area, suggesting that the hydrothermal alteration of these deposits is associated with later volcanism of the area.

  • PDF

Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period (추가령단층대 주요 단층의 백악기 이후 재활동 연대)

  • Chung, Donghoon;Song, Yungoo;Park, Changyun;Kang, Il-Mo;Choi, Sung-Ja;Khulganakhuu, Chuluunbaatar
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • Recently developed illite-age-analysis (IAA) approach has been applied to determine the multiple events for the Singal and Wangsukcheon faults in the Chugaryeong fault belt, Korea. Fault reactivated events during Late Cretaceous to Paleogene events($69.2{\pm}0.3$ Ma and $27.2{\pm}0.5$ Ma) for the Singal fault and of $75.4{\pm}0.8$ Ma for the Wangsukcheon fault were determined by combined approach of the optimized illite-polytype quantification and the K-Ar age-dating of clay fractions separated from the fault clays. These absolute geochronological determinations of the multiple tectonic events recorded in the Chugaryeong fault belt are crucial to establish the tectonic evolution of the Korean Peninsula since Late Cretaceous.

Implication of Soil Minerals on Formation of Impermeable Layers in Saprolite Surface-Piled Upland Fields at Highland

  • Zhang, Yongseon;Sonn, Yeon-Kyu;Moon, Yong-Hee;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.284-289
    • /
    • 2014
  • Farmers in highlands in South Korea pile up 20 to 30 cm of saprolites, mostly granite- or granite-gneiss-weathered materials, on surface of arable lands every three to five years to compensate eroded soil and sometimes to discontinue soil-borne diseases. Immediate increases of infiltration and percolation rates are expected with coarse textured saprolites while soil drainage becomes poorer in a long-term. In this study, we analyzed mineralogical characteristics and micro-morphology of plow pan to investigate processes making impermeable layers. Soil samples were collected from plow pan, usually located at approximately 20 cm soil depth and at the lower part of piled saprolites, in arable lands in Hoenggye 5-ri, Daekwanryeong-myeon, Gangwon-do (N37.7, E128.7) in which saprolites were added 2, 4, and 8 years ago; saprolites were transported from similar areas. The saturated hydraulic conductivity decreased over time. Based on soil thin section pedography, quartz and feldspar accounted for a majority of minerals. The size of feldspar decreased and macropores became filled with clay or silt particles over time, which implies that macropores were packed with particles weathered from feldspar. The X-ray diffraction (XRD) analysis indicated that intensity of feldspar decreased over time and the reverse was true for kaolinite and illite, indicating that feldspar and mica weathering induced formation of kaolinite and illite. Conclusively, deteriorated drainage by formation of impermeable layers in farms with piled saprolites was caused by accumulation of clay minerals such as kaolinite and illite in macropores; illite and kaolinite can be formed by weathering of mica and feldspar, respectively.

Illite, Reviewed on the Chemical Compositions - The Mixed Phase among Muscovite, Pyrophyllite and Chlorite: EPMA Quantitative Analysis of Shale from the Jigunsan Formation at Seokgaejae in Samchuk-City, Gangwon-do (화학조성으로 다시 보는 일라이트-백운모, 파이로필라이트 및 녹니석의 혼합상: 강원도 삼척시 석개재에 분포하는 직운산층 셰일에 대한 EPMA 정량분석)

  • Choi, Seung-Hyun;Mun, Hyang-Ran;Lee, Young-Boo;Lee, Jung-Hoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.143-153
    • /
    • 2012
  • Mica-type minerals (illites) in the shales of the Jigunsan formation at Seokgaejae in Samchuk-City, Gangwon-do are studied using electron probe micro analysis (EPMA). The average chemical formula of the mica-type mineral obtained from the quantitative analysis is $(K_{1.17}Na_{0.04}Ca_{0.01})(Al_{2.80}Mg_{1.17}Fe_{0.78})(Si_{6.34}Al_{1.66})O_{20}(OH)_4$, which shows a chemical formula within the range of illite. These illites so called can be considered as mixed-phases among muscovite, pyrophyllite and chlorite due to the low contents of interlayer cations and high Mg, Fe. The formula of illite is separated into those three minerals and the method for the separation is newly formulated and proposed in this study. From the formula of illite, the content of muscovite is estimated from K (Na and Ca included), the content of chlorite by Mg+Fe, and the rest remains as pyrophyllite. The chemical formula of muscovite can be calculated by subtracting the compositions of pyrophyllite and chlorite from the analyzed composition of illite using an ideal formula for pyrophyllite and analyzed average formula for chlorite. The calculated formula of muscovite is supposed to be stoichiometric in principle. The result of the separation of analyzed illite is 61% muscovite, 27.3% chlorite and 11.7% pyrophyllite and the calculated formula of muscovite after separation is $(K,Na,Ca)_{2.00}Al_{3.69}(Si_{6.75}Al_{1.25})O_{20}(OH)_4$. The calculated formula of muscovite slightly low in Al content can be considered to be reasonable in general when the low content of Al in the rock and the uncertainties of chlorite compositions used in the calculation are counted. This supports that the method of separation proposed in this study is also applicable.