• Title/Summary/Keyword: Iljik Formation

Search Result 2, Processing Time 0.018 seconds

Detrital zircon U-Pb ages of the Cretaceous Iljik, Jeomgok, and Sagok formations in the Cheongsong Global Geopark, Korea: Depositional age and Provenance (청송 세계지질공원 내 백악기 일직층, 점곡층, 사곡층의 쇄설성 저어콘 U-Pb 연령: 퇴적시기와 기원지)

  • Chae, Yong-Un;Choi, Taejin;Paik, In Sung;Kim, Jong-Sun;Kim, Hyun Joo;Jeong, Hoon Young;Lim, Hyoun Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.11-38
    • /
    • 2021
  • Detrital zircon U-Pb dating of samples from the Baekseoktan (Iljik Formation), Mananjaam (Jeomgok Formation), and Sinseongri (Sagok Formation) geosites in the Cheongsong Global Geopark were carried out to estimate the depositional age and provenance of the Hayang Group in the Gyeongsang Basin. In the Iljik Formation, Jurassic and Triassic zircons are dominant with minor Precambrian zircons, with no Cretaceous zircon. In contrast, the Jeomgok and Sagok formations show very similar age distributions, which have major age populations of Cretaceous, Jurassic, and Paleoproterozoic ages. The weighted mean ages of the youngest zircon age groups of the Jeomgok and Sagok formations are 103.2±0.3 and 104.2±0.5 Ma, respectively. Results suggest that the depositional ages of the Jeomgok and Sagok Formations are Albian. The detrital zircon age spectra indicate a significant change in provenance between the Iljik and Jeomgok formations. The sediments of the Iljik Formation are thought to have been supplied from nearby plutonic rocks. However, the Jeomgok and Sagok sediments are interpreted to have been derived from relatively young deposits of the Jurassic accretionary complex located in southwest Japan.

Geological Structure around Andong Fault System, Pungcheon-myeon, Andong, Korea (안동시 풍천면 안동단층계 주변의 지질구조)

  • Kang, Ji-Hoon;Lee, Duck-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.83-94
    • /
    • 2008
  • The Pungcheon-myeon, Andong, consists mainly of Precambrian metamorphic rocks, Jurassic igneous rocks, Cretaceous sedimentary rocks (Hasandong, Jinju and Iljik Formations) and Cretaceous igneous rocks (gabbroic rocks, dykes), in which several major faults are developed; Andong fault of ENE trend, which is the boundary fault of the Cretaceous Gyeongsang Basin and the Precambrian-Jurassic basement (Yeongnam Massif), Namhu fault parallel to it, Maebong fault of NNW direction, bow-shaped Gwangdeok fault of ENE direction which is convex toward SSE direction, and Hahoe fault of NNE direction. This paper is researched the geological structures around these major faults by means of the detailed geometric analysis on beddings, joints, faults and drag folds. As a result, a reverse slip faulting of top-to-the SSE movement accompanied with a regional drag folding is recognized from the arrangement of bedding poles measured around the Gwangdeok and Hahoe faults at its northeastern extension, and a zone of Gwangdeok drag fold of 150-300 m width, which is wider at the central and eastern parts of Gwangdeok fault and narrower at its western part and Hahoe fault, is also defined. It indicates that the Hahoe and Gwangdeok faults are a single fault and their movements are coeval unlike the results of earlier reasearchers. And, In this area are recognized two types of faults [(E)NE${\sim}$EW(fault I), WNW${\sim}$NNW (fault II), trending faults] and four types of joints [EW (I), (N)NW (II), NNE (III), NE (IV) trending joints]. These fractures were formed at least through four different events, named as Dn to Dn+3 phases. (1) Dn phase; the formation of joint (I) (Gwangdeok joint) and the intrusion of acidic dykes of EW trend under the compression of EW direction. (2) Dn+1 phase; the formations of joint (II) (Maebong joint), lens-shaped boudinage of acidic dykes, oblique-slip reverse fault (Fault I-Gwangdeok fault) under the compression of (N)NW direction, and the formation of regional zone of Gwangdeok drag fold accompanying the Gwangdeok faulting. (3) Dn+2 phase; those of joint (III), Fault II (Maebong fault) by dextral strike-slip movement of Maebong joint under the compression of NNE direction, and the extension cutting of Dn+1 structures due to the Maebong faulting. (4) Dn+3 phase; the jointing (IV) and the reactivation of Fault II as oblique-slip type with predominant dextral motion which took place under the compression of NE direction. It also suggests that the Maebong fault is not a tear fault deveolped during thrust tectonics of the Andong and Gwangdeok faults but is a post-fault during different tectonic event.