• Title/Summary/Keyword: Ignition times

검색결과 168건 처리시간 0.031초

사이클로펜탄올의 연소특성치의 측정 (The Measurement of Combustible Properties of Cyclopentanol)

  • 하동명
    • 한국가스학회지
    • /
    • 제18권2호
    • /
    • pp.35-40
    • /
    • 2014
  • 사이클로펜탄올의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였으며, 인화점과 발화지연시간에 의한 자연발화온도는 장치를 이용하여 측정하였다. 그 결과, 사이클로펜탄올의 밀페식 장치에 의한 하부인화점은 $49^{\circ}C$로 측정되었으며, 개방식에서는 $59^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 사이클펜탄올의 최소자연발화온도는 $363^{\circ}C$로 측정되었다.

노말펜타데칸의 화재 및 폭발 특성치의 측정 (The Measurement of Fire and Explosion Properties of n-Pentadecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.53-57
    • /
    • 2013
  • For the safe handling of n-pentadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-pentadecane were calculated. The lower flash points of n-pentadecane by using closed-cup tester were measured $118^{\circ}C$ and $122^{\circ}C$. The lower flash points and fire point of n-pentadecane by using open cup tester were measured $126^{\circ}C$ and $127^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-pentadecane. The experimental AIT of n-pentadecane was $195^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $118^{\circ}C$ and upper flash point $174^{\circ}C$ for n-pentadecane were 0.54 Vol.% and 6.40 Vol.%.

사이클로헥사논의 화재 및 폭발 특성치의 측정 및 고찰 (The Measurement and Investigation of Fire and Explosion Characteristics of Cyclohexanone)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제25권4호
    • /
    • pp.28-34
    • /
    • 2011
  • 사이클로헥사논의 안전한 취급을 위해서 $25^{\circ}C$에서 폭발한계를 고찰하였고, 실험장치를 이용하여 하부 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 공정의 안전을 위해서 사이클로헥사논의 폭발하한계는 1.1 Vol.%($100^{\circ}C$), 상한계는 9.4 Vol.%를 추천하였고, 하부인화점은 밀폐계에서 $42{\sim}43^{\circ}C$와 개방식에서 $49{\sim}51^{\circ}C$로 측정되었다. ASTM E659-78 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 여기서 측정된 최소자연발화온도는 $415^{\circ}C$였다.

아니솔의 연소특성치의 측정에 의한 MSDS의 적정성 (Appropriateness of MSDS by Means of the Measurement of Combustible Properties of Anisole)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제29권2호
    • /
    • pp.20-24
    • /
    • 2015
  • 아니솔의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였고, 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, 밀폐식 장치에 의한 아니솔의 하부인화점은 $39^{\circ}C$$42^{\circ}C$로 측정되었으며, 개방식에서는 $50^{\circ}C$$54^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 아니솔의 최소자연발화온도는 $390^{\circ}C$로 측정되었다. 측정된 하부인화점에 의한 폭발하한계는 1.07 Vol%로 계산되었다.

사이클로헥산올의 연소특성치의 측정 (The Measurement of Combustible Properties of Cyclohexanol)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제28권2호
    • /
    • pp.64-68
    • /
    • 2014
  • 사이클로헥산올의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였고, 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, 밀폐식 장치에 의한 사이클로헥산올의 하부인화점은$60^{\circ}C{\sim}64^{\circ}C$로 측정되었으며, 개방식에서는 $66^{\circ}C{\sim}68^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 사이클로헥산올의 최소자연발화온도는 $297^{\circ}C$로 측정되었다. 측정된 하부인화점과 상부인화점에 의한 폭발하한계는 0.95 Vol%, 상한계는 10.7 Vol%로 계산되었다.

노말헥사데칸의 화재 및 폭발 특성치의 측정 (The Measurement of Fire and Explosion Properties of n-Hexadecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.39-45
    • /
    • 2014
  • For the safe handling of n-hexadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-hexadecane were calculated. The lower flash points of n-hexadecane by using the Setaflash and the Pensky-Martens closed testers were measured $128^{\circ}C$ and $126^{\circ}C$, respectively. The lower flash points of the Tag and the Cleveland open cup testers were measured $136^{\circ}C$ and $132^{\circ}C$, respectively. The fire points of the Tag and the Cleveland open cup testers were measured $144^{\circ}C$. respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-hexadecane. The experimental AIT of n-hexadecane was $200^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $128^{\circ}C$ and upper flash point $180^{\circ}C$ for n-hexadecane were 0.42 Vol.% and 4.70 Vol.%.

스티렌의 연소특성치 측정 및 예측 (Measurement and Prediction of Combustion Properties of Styrene)

  • 하동명;나병균
    • 한국가스학회지
    • /
    • 제17권4호
    • /
    • pp.70-76
    • /
    • 2013
  • 스티렌의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였고, 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, 스티렌의 폭발하한계는 0.9 Vol.%, 상한계는 8.0 Vol.%를 추천하고, 밀페식 장치에 의한 스티렌의 하부인화점은 $29^{\circ}C{\sim}31^{\circ}C$로 측정되었으며, 개방식에서는 $32^{\circ}C{\sim}36^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 스티렌의 최소자연발화온도는 $460^{\circ}C$로 측정되었다.

축소 노멀 도데케인 화학반응 메커니즘 개발 (Development of Reduced Normal Dodecane Chemical Kinetics)

  • 이상열;김규진;민경덕
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.37-44
    • /
    • 2013
  • Generally, a reduced chemical mechanism of n-heptane is used as chemical fuel of a 3-D diesel engine simulation because diesel fuel consists of hundreds of chemical components and various chemical classes so that it is very complex and large to use for the calculation. However, the importance of fuel in a 3-D simulation increases because detailed fuel characteristics are the key factor in the recent engine research such as homogeneous charged compression ignition engine. In this study, normal paraffin, iso paraffin and aromatics were selected to represent diesel characteristics and n-dodecane was used as a representative normal paraffin to describe the heavy molecular weight of diesel oil (C10~C20). Reduced kinetics of iso-octane and toluene which are representative species of iso paraffin and aromatics respectively were developed in the previous study. Some species were selected based on the sensitivity analysis and a mechanism was developed based on the general oxidation scheme. The ignition delay times, maximum pressure and temperature of the new reduced n-dodecane chemical mechanisms were well matched to the detailed mechanism data.

HTPE 둔감추진제 연소/점화/안전도 특성 연구 (The Study of Combustion, Ignition and Safety Characteristics of HTPE Insensitive Propellant)

  • 유지창;정정용;김창기;민병선;류백능
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.351-355
    • /
    • 2011
  • 본 연구에서는 바인더로 HTPE)/BuNENA를 적용하고 산화제로는 AP와 AN, 금속 연료로 Al을 사용한 HTPE 둔감 추진제 2종에 대한 연소속도, 점화지연시간, 민감도 및 둔감특성을 HTPB 추진제와 비교 고찰하였다. 민감도는 HTPB 추진제와 HTPE 추진제가 유사하게 나타났으며, 점화지연시간은 HTPE 추진제가 2~3배 크게 나타났고, 둔감성에서는 HTPB 추진제가 EIDS 완속가열시험 기준을 만족시키지 못한 반면 HTPE 추진제는 기준에 부합하였다.

  • PDF

부산항만 퇴적물의 성분분석 및 메탄발생량 산정 연구 (Physico-Chemical Properties and Methane Production Rates for Busan Harbor Sediments)

  • 최보람;이태윤
    • 한국지반환경공학회 논문집
    • /
    • 제12권5호
    • /
    • pp.37-42
    • /
    • 2011
  • 본 연구는 부산항만 내에 퇴적된 퇴적물에 대한 현재의 성분 및 혐기성 상태에서의 잠재메탄발생량을 평가하기 위해 수행되었다. 부산항만 내 10곳의 지점을 선정하여 퇴적물을 채취하였고, 퇴적물 특성을 파악하기 위해 특성을 강열감량, 원소분석, XRD, XRF 분석을 실시하였다. 모든 특성을 구성성분은 균일하였으며, 강열감량 경우 8~10% 높은 값을 보였다. 총 5개의 시료에 대한 BMP 실험 경우 최대메탄발생량은 11.9~15.5mL methane/g VS로 시료간에 편차가 존재하였다. 기존 연구와 비교 시 음식물과 종이류에 비해 발생되는 메탄양은 작으나 발생속도는 5배에서 20배가량 큰 값을 보여주었다.