• Title/Summary/Keyword: Ignition times

Search Result 168, Processing Time 0.022 seconds

Measurement and Prediction of Autoignition Temperature(AIT) of Flammable Substances - Methanol and Ethanol - (가연성물질의 자연발화온도 측정 및 예측 - 메탄올과 에탄올 -)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.54-60
    • /
    • 2004
  • Flammable substances are frequently used chemical industry processes. An accurate knowledge of the ALTs(Autoignition Temperatures) is important in developing appropriate prevention and control measures in industrial fire protection. The AITs describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The AITs are dependent upon many factors, namely initial temperature, pressure, volume, fuel/air stoichiometry, catalyst material, concentration of vapor, ignition delay. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for methanol and ethanol. The A.A.P.E.(Average Absolute Percent Error) and the A.A.D.(Average Absolute Deviation) of the experimental and the calculated delay times by the AITs for methanol were 14.59 and 1.76 respectively. Also the A.A.P.E. and the A.A.D. of the experimental and the calculated delay times by the ATIs for ethanol were 8.33 and 0.88.

A Numerical Study of the Backdraft Behavior with the Variation of the Ignition Location and Time (점화원 위치 및 점화시간 변화에 따른 백드래프트 거동에 관한 수치적 연구)

  • Ko, Min Wook;Oh, Chang Bo;Han, Yong Shik;Do, Kyu Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • The behavior of backdraft in the compartment with different ignition locations and times was numerically investigated. The Fire Dynamics Simulator (FDS) v5.5.3 with a model-free simulation option was used in the numerical simulation of backdraft. The ignition source was located near the inside wall, at the compartment center and near the window opening, respectively. The ignition was started at the instance when the fresh air reached the ignition location or when a sufficient time passed compare to the instance of the arriving of the fresh air to the ignition location. As a result, for the ignition source was located near the inside wall, a strong fire ball was observed at once and the result was similar to the previous experimental result. For the ignition source was located at the center of the compartment, a strong fire ball was occurred and two strong fire balls were observed consecutively for the ignition time was delayed. For the ignition source was located near the window opening and longer time was given for the ignition compare the duration of the fresh air arriving to the ignition location, the rapid temperature variation was not observed because there was no flame. However, for the ignition was started at the instance when the fresh air reached the ignition location, the ignition could be initiated and a intensive fire ball was observed. The pressure measured at the upper inside part of the window opening provided a similar trend with the previous experimental result of compartment backdraft.

A study on the effect of discharge in a multiple spark ignition engine (다회수 스파크 점화기관의 방전효과에 관한 연구)

  • 이성열;한병호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.55-64
    • /
    • 1989
  • The effect of discharge have been investigated for condition of spark in a multiple spark ignition engine, as the spark duration, capacitive and inductive discharge energy were calculated for condition of spark by ignition wave and energy formula. The useful portion of spark discharge is divided into capacitance portion and inductance portion. It was found that capacitive discharge energy and spark duration were increased according to increasing number of spark, and inductive discharge energy was increased according to increasing spark interval. Therefore engine torque was increase and lean misfire limit was extended comparing with the standard ignition system. It found that spark energy was discharged within ignition delay period availability acted on the formation and growth of flame kernel, and total spark energy was increased according to increasing number of spark times, but discharged spark energy after ignition delay became unavailable energy. And the capacitive discharge energy has the dominant effect for stoichiomeric or not very rich air-fuel mixture but inductive discharge energy has the dominant effect for lean air-fuel mixture.

  • PDF

The Development of Lab-Scale Hybrid Rocket Ignition System (Lab-scale 하이브리드 로켓 점화장치 개발)

  • 유덕근;김진곤;길성만
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.122-125
    • /
    • 2003
  • For Lab-scale Hybrid Rocket's Ignition, It is needs of heat source to vaporize solid fuel. We used Nichrome wire which has a electric resistance for ignition. But Ignition system by using Nichrome wire is not only the disposable system, but also the system which has an affect on the Hybrid rocket's structures(nozzle throat diameter). The new Ignition system composed of Butane+propane gas' supply devices and spark plug. RPL(Rocket Propulsion Lab.) perform the hybrid rocket experiments over 50 times by using new ignition system. The fact that is possible to throttle the Thrust in hybrid rocket is confirmed.

  • PDF

Numerical Investigation on Initiation Process of Spherical Detonation by Direct Initiation with Various Ignition Energy

  • Nirasawa, Takayuki;Matsuo, Akiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.45-52
    • /
    • 2008
  • In order to investigate the initiation and propagation processes of a spherical detonation wave induced by direct initiation, numerical simulations were carried out using two-dimensional compressible Euler equations with an axisymmetric assumption and a one-step reaction model based on Arrhenius kinetics with various levels of ignition energy. By varying the amount of ignition energy, three typical initiation behaviors, which were subcritical, supercritical and critical regimes, were observed. Then, the ignition energy of more than $137.5{\times}10^6$ in non-dimensional value was required for initiating a spherical detonation wave, and the minimum ignition energy(i.e., critical energy) was less than that of the one-dimensional simulation reported by a previous numerical work. When the ignition energy was less than the critical energy, the blast wave generated from an ignition source continued to attenuate due to the separation of the blast wave and a reaction front. Therefore, detonation was not initiated in the subcrtical regime. When the ignition energy was more than the minimum initiation energy, the blast wave developed into a multiheaded detonation wave propagating spherically at CJ velocity, and then a cellular pattern radiated regularly out from the ignition center in the supercritical regime. The influence on ignition energy was observed in the cell width near the ignition center, but the cell width on the fully developed detonation remained constant during the expanding of detonation wave due to the consecutive formation of new triple points, regardless of ignition energy. When the ignition energy was equal to the critical energy, the decoupling of the blast wave and a reaction front appeared, as occurred in the subcrtical regime. After that, the detonation bubble induced by the local explosion behind the blast wave expanded and developed into the multiheaded detonation wave in the critical regime. Although few triple points were observed in the vicinity of the ignition core, the regularly located cellular pattern was generated after the onset of the multiheaded detonation. Then, the average cell width on the fully developed detonation was almost to that in the supercritical regime. These numerical results qualitatively agreed with previous experimental works regarding the initiation and propagation processes.

  • PDF

Ignition Delay Times in $C_2H_2-O_2$-Ar Mixture behind a Reflected Shock Wave

  • 류지철;서희;강준길;오규형
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1071-1075
    • /
    • 1997
  • Detonation characteristics of acetylene were studied behind reflected shock waves in the temperature range 800-1350 K by monitoring OH emission and pressure profiles. For a comprehensive measurement of ignition delay time, the mixture composition was varied in a wide range of Ar mole % was varied from 0.625 to 2.5 in stoichiometric ratio of C2H2-O2-Ar. A computer simulation study was also performed to elucidate the important elementary steps determining ignition behavior. The 33-reaction mechanism provides a good agreement in delay time between the observed and the calculated ones.

The Applicable Investigation of Response Surface Methodology(RSM) for the Prediction of the Ignition Time, the Heat Release Rate and the Maximum Flame Height of the Interior Materials (내장재의 발화시간, 열방출율 및 최대화염 높이의 예측을 위한 반응표면방법론의 활용성 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.14-20
    • /
    • 2006
  • The aim of this study is to predict the ignition times and the HRR(heat release rate) for building interior materials. By using the literature data and RSM(response surface methodology), the new equations for predicting the ignition time and the HRR of building interior materials are proposed. The A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated ignition times by means of the thickness and the density were 4.35 sec and 1.57 sec, and the correlation coefficient was 0.987. The correlation coefficient of the reported and the calculated the net HRR by means of burner width and power was 0.983. Also the correlation coefficient of the reported and the calculated the total HHR by means of burner width and power was 0.999. The correlation coefficient of the reported and the calculated the maximum flame height by means of burner width and power was 0.999. The values calculated by the proposed equations were in good agreement with the literature data.

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

Asymptotic analysis of ignition of a semi-infinite body for a large activation energy (활성화 에너지가 매우 큰 경우에 점근법을 이용한 반무한체의 점화에 관한 연구)

  • 백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.703-707
    • /
    • 1989
  • The ignition of solid particle under strong convective heating has been investigated by applying an asymptotic analysis to a semi-infinite body for varying values of gas recovery temperature and convective heat transfer coefficient. It was found that if the scale of the reaction zone is much smaller than the characteristic length of the body size, then infinite body theory can be used to estimate the ignition delay time. Furthermore, the convective heat transfer coefficient was found to have more influence on predicting the ignition delay times of particle exposed to an incident shock wave rather than the gas recovery temperature.

Friction-induced ignition and initiation modeling of HMX, RDX and AP based energetic materials (마찰 하중에 의한 HMX, RDX, AP기반 고에너지물질의 발화특성모델링 연구)

  • Gwak, Min-Cheol;Yoo, Ji-Chang;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.283-287
    • /
    • 2008
  • The heat released during the external frictional motion is a factor responsible for initiating energetic materials under all types of mechanical stimuli including impact, drop, or penetration. We model the friction-induced ignition of HMX, RDX and AP/HTPB propellant using the BAM friction apparatus and one-dimensional time-to-explosion apparatus whose results are used to validate the friction ignition mechanism and the deflagration kinetics of energetic materials, respectively. The ignition times for each energetic sample due to friction are presented.

  • PDF