• 제목/요약/키워드: Ignition delay period

검색결과 28건 처리시간 0.029초

직접분사식 디젤기관의 착화지연기간에 대한 고찰 (Some Considerations of the Ignition Delay Period in D.I Diesel Engine)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.97-103
    • /
    • 2010
  • The four combustion stages in a diesel engine have close correlation among them. Especially, the ignition delay period has significant effect on the following combustion stage. And the period is also one of inevitable combustion processes in the diesel engine. For example, the diesel knocking is a well-known phenomenon due to the long ignition delay period. The interval of the ignition delay period is affected by the mixture formation process in the cylinder. However, in the case of the D.I. diesel engine, the available duration to make the mixture formation of air-fuel is very short. In addition, the means of the mixture formation mainly depends on the injection characteristics and properties of the fuel. It is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this study, using the visible engine, we measured the ignition delay period by photo sensor which detect occurrence of flame and presented the factors of the injection characteristics such as kinds of injection system, the injection pressure and the injection timing. The relation between the ignition delay period and cylinder pressure diagram which was concurrently obtained was also estimated.

터보과급 디이젤기관의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Turbocharged Diesel Engine)

  • 채재우;정성찬;백중현
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.76-86
    • /
    • 1994
  • Combustion of diesel engine depends on the mixing of air and evaporating fuel during ignition delay greatly. Variation of air-fuel mixing rate and ignition delay for engine operating condition causes difference of combustion, performance and exhaust emissions. This study is investigated in a turbocharged diesel engine of IDI swirl chamber type. In the results, As injection timing is advanced until $12.6^{\circ}$ BTC, ignition delay decreases. NOx concentration and smoke level in exhaust gas increases for advanced injection timing Ignition delay, combustion period, pressure rise rate and exhaust gas temperature are increased with increasing engine speed. And ignition delay at high load is more decreased than that at low load. Ignition delay and combustion period are decreased with increasing intake pressure. Power increases, temperature and CO, NOx concentration in exhaust gas decreases as intake pressure increases. With increasing load, ignition delay is decreased and combustion period, motoring pressure are increased.

  • PDF

가솔린 기관(機關)의 혼합기(混合氣) 성분(成分)이 출력(出力)에 미치는 영향(影響) (점화지연(点火遲延) 및 연소(燃燒) 기간(期間)에 미치는 영향(影響)) (The Effect of Mixture Component in a Gasoline Engine on Output (The Effect of Ignition Delay and Combustion Period))

  • 송재익
    • 한국분무공학회지
    • /
    • 제3권1호
    • /
    • pp.19-26
    • /
    • 1998
  • The effect of mixture component makes a nelay time and a long total combustion period $\tau_{p\;max}$. The flame propagation delay $\tau_{df}$ was determined by the record of current ion. The pressure release delay $\tau_{dp}$ and $\tau_{p\;max}$ were determined by the indicated pressure diagram in constant volume of the combustion chamber. The results are as follows: 1) The ignition delay $\tau_t$ time takes the minimum value around $\Phi=1.15$. 2) $\tau_{df}$ and $\tau_t$ time increased according to the increases of the concentrated dilution gases, because the adiabatic flame temperature decreased due to the increases of the heat capacity. But dilution gases have little effect on flame nucleus formation delay 3) The relation between $\tau_t$ time and reciprocal laminar burning velocity is almost linear. 4) The increase of the propagation length is accompanied with increased ratio of the $\tau_{df},\;\tau_{dp},\;\tau_{t},\;\tau_{p\;max}$.

  • PDF

Coal Oil을 사용한 스파크 점화기관의 압축비 변화에 따른 엔진 성능에 관한 연구 (A Study on the Performance Characteristics According to the Compression Ratio of Spark Ignition Engine Fuelled with Coal Oil)

  • 한성빈;정연종
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.225-230
    • /
    • 2017
  • Coal oil is widely used as a home heating fuel for portable and installed coal oil heaters. Today, Coal oil is widely used as fuel for jet engines and some rocket engines in several grades. This paper describes the performance characteristics according to the compression ratio of spark ignition engine fuelled with coal oil. As a result, the following knowledge is obtained: As the compression ratio is decreased, there is an increase in torque, indicated mean effective pressure (IMEP), heat release rate, and brake thermal efficiency. Higher compression ratio of the engine decreases the ignition delay period, combustion period, and cooling loss.

다회수 스파크 점화기관의 방전효과에 관한 연구 (A study on the effect of discharge in a multiple spark ignition engine)

  • 이성열;한병호
    • 오토저널
    • /
    • 제11권5호
    • /
    • pp.55-64
    • /
    • 1989
  • The effect of discharge have been investigated for condition of spark in a multiple spark ignition engine, as the spark duration, capacitive and inductive discharge energy were calculated for condition of spark by ignition wave and energy formula. The useful portion of spark discharge is divided into capacitance portion and inductance portion. It was found that capacitive discharge energy and spark duration were increased according to increasing number of spark, and inductive discharge energy was increased according to increasing spark interval. Therefore engine torque was increase and lean misfire limit was extended comparing with the standard ignition system. It found that spark energy was discharged within ignition delay period availability acted on the formation and growth of flame kernel, and total spark energy was increased according to increasing number of spark times, but discharged spark energy after ignition delay became unavailable energy. And the capacitive discharge energy has the dominant effect for stoichiomeric or not very rich air-fuel mixture but inductive discharge energy has the dominant effect for lean air-fuel mixture.

  • PDF

高溫空氣流에 噴射한 噴霧의 自然燃燒에 관한 硏究 - 제3보: 분무의 연소기간 측정, 보조연료의 분사시간 및 난류가 분무의 착화지정기간 단축에 미치는 영향 - (A Study on the Spontaneous Ignition of the Fuel Injected into a Hot Air Stream - Part III : Measurement of Flaming Duration, Effects of Auxiliary-Fuel Injection-Timing and Turbulence on Shortening the Ignition Delay Period -)

  • 방중철;태전간랑
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.367-375
    • /
    • 1986
  • 본 연구에서는, 주분무의 착화지연기간에 미치는 보조연료 분사시기의 영향 및 공기유동을 연소장 내에 도입시켜 분무와 공기의 혼합을 적극적으로 촉진시킴에 따라 그 후의 연소과정이 어떤 영향을 받는가에 대해서 검토했다.또 소형고속 디이 젤기관에서는 분무의 연소기간을 최대한 단축 시키지 않으면 안되므로, 보조연료 분사 에 의해 그 단축목적이 어느 정도 달성될 수 있는 가능성을 제2보에서 시사한 바 있으 나 본 연구에서 더욱 상세히 검토했다.

승용 디젤엔진의 EGR과 Induction위치에 따른 소음 영향 (The Effects of EGR and EGR Induction Point on Combustion Noise of a Passenger Diesel Vehicle)

  • 강상규;김재헌;백성남;강구태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.393-396
    • /
    • 2007
  • EGR is well established and efficient means to reduce NOx emissions. The increase of EGR rate affects the ignition delay of the combustion due to the lower oxygen availability. The increasing of the ignition delay period causes large combustion noise. In this study, the effects of EGR and Induction Point on combustion noise are investigated by measuring cylinder pressure and noise. As a result, The Combustion noise is markedly increased under the application of EGR. The increased premixed distance by displacing EGR Induction point in flow direction causes the uniform EGR distribution and the modulation level of the combustion noise is reduced slightly.

  • PDF

가스체 연료를 사용하는 압축착화기관에 관한 기초적 연구 (Fundamental Experiments of a Compression Ignition Engine Using Gaseous Fuel)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.147-157
    • /
    • 1996
  • Natural gas is gaining more attraction as a future fuel in particular both for environmental protection and energy conservation. In order to bring about more widespread use of gaseous engines, the technology capable of achieving output and efficiency performance equivalent to that of diesel engines needs to be developed. In the present paper, the requirements of the pilot torch from pre-chamber for ensuring ignition and promoting combustion are discussed by means of taking high-speed flame photography and system can run with leaner mixture of various fuels comparing to the electric plug ignition system cause the ignition delay period ignited with the torch and the combustion period are very short in spite of changing A/F of gaseous fuels in the main chamber. However, the suitable piston-cavity design for the use of lower-hydrocarbon fuels such as propane and butane must be discussed increasingly in the mear future.

스파크 점화 기관의 노크 모델에 관한 연구 (A study on knock model in spark ignition engine)

  • 장종관;이종태;이성열
    • 오토저널
    • /
    • 제14권5호
    • /
    • pp.30-40
    • /
    • 1992
  • Spark knock obstructs any improvement in the efficiency and performance of an engine. As the knock mechanism of spark ignition engine, the detonation and the autoignition theory have been offered. In this paper, the knock model was established, which was able to predict the onset of knock and knock timing of spark ignition engine by the basis of autoignition theory. This model was a function of engine speed and equivalent air-fuel ratio. When this established knock model was tested from 1000rpm to 3000rpm of engine speed data, maximum error was crank angle 2 degrees between measured and predicted knock time. And the main results were as follows by the experimental analysis of spark knock in spark ignition engine. 1) Knock frequency was increased as engine speed increased. 2) Knock amplitude was increased as mass of end gas increased. 3) Knock frequency was occured above minimum 18% mass fraction of end gas.

  • PDF

화염 불안정성에 따른 개선된 이미지 처리 기법을 활용한 디젤-바이오디젤 혼합 연료 액적의 연소 특성 (The Combustion Characteristics of Diesel-Biodiesel Blended Fuel Droplets Using the Modified Image Processing Method According to Flame Instability)

  • 최주환;임영찬;서현규
    • 한국분무공학회지
    • /
    • 제26권3호
    • /
    • pp.142-148
    • /
    • 2021
  • The objective of this study is to analyze the basic flame behavior characteristics using the single fuel droplet combustion of diesel, palm-based biodiesel, and canola-based biodiesel. The results were compared and analyzed through the post processed image, which was applied the threshold level for removing noise in the raw image. The raw image was taken by a high-speed camera during the entire combustion process. At the same time, the maximum flame length, which was measured by the application code of the MATLAB program, the ignition delay, and the combustion period were compared and analyzed.