• 제목/요약/키워드: Ignition Timing

검색결과 265건 처리시간 0.019초

2색법에 의한 에멀죤 연료의 화염온도 및 soot 분포 측정에 관한 실험적 연구

  • 박재완;박권하;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.103-110
    • /
    • 1998
  • This experiment is performed to investigate the effects of the emulsion on the flame temperature and soot formation in a diesel engine. The two-color method is used to measure the flame temperature for combustion of emulsified diesel in the Rapid Compression and Expansion Machine(RCEM). The concentration of soot is estimated via calculation of the KL factor. The solenoid valve, elecronic controller and needle lift sensor are used to control the exact injection timing and duration under various operating conditions. According to the results the soot concentration is reduced with the increasing W/O while the temperature reduced. The pressure data and the flame images captured by a high speed camera show that the ignition delay of emulsified diesel increase the duration of premixed combustion. The sizes of water drops are measured to be about 10${\mu}m$ by a microscope.

  • PDF

낮은 엔진 부하의 운전조건에서 흡기포트 내 물 분사에 따른 가솔린 직접분사 엔진의 연소 특성 (Combustion Characteristics of Gasoline Direct Injection Engine with Water Injection into Intake Port under Low Engine-Load Operating Condition)

  • 전해강;이경환;최명식;박수한
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.96-101
    • /
    • 2018
  • The purpose of this study is to investigate the effect of water injection on combustion characteristics of gasoline direct injection (GDI) engine with turbo-charger under low-load operating condition. The test engine used in this study has four-cylinder and 10.2 of compression ratio. In order to study the effect of water injection ratio on combustion characteristics, the water was injected into the intake port from 10% to 50%, based on fuel injection quantity. From the experiment, it revealed that the water injection induced the improvement of fuel economy because of the advance of spark-timing by the reduction of in-cylinder temperature. In addition, the water injection caused the prolong of extension of the ignition delay and slight increase of burn duration.

디젤기관에 있어서 흡기습도 변화가 연소 특성과 배기배출물 특성에 미치는 영향 (Effects of Suction Air Humidity on the Combustion and Exhaust Emissions Characteristics in Diesel Engine)

  • 임재근;김동호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.421-426
    • /
    • 2000
  • A study on the combustion and exhaust emissions characteristics of diesel engine with various suction air humidity is performed experimentally. In this paper, suction air humidity is changed from RH 50% to RH 90%, the experiments are performed at engine speed 1800rpm, and main measured parameters are cylinder pressure, fuel consumption rate, CO, HC, NOx and Soot emissions etc. Increase of suction air humidity from RH 50% to RH 90% does not effect specific fuel consumption, decreases maximum pressure in cylinder, ratio of maximum pressure rise and net heat release, and delays ignition timing. Also, that increases CO and HC emissions, decreases NOx emissions, but does not constant in changing tendency on emission.

  • PDF

EGR을 사용하는 직접분사식 디젤엔진의 연소과정 및 매연가스 배출특성에 대한 수치해석 (Numerical studies for combustion processes and emissions in the DI diesel engines using EGR)

  • 권영동;이재철;김용모;김세원
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.659-669
    • /
    • 1997
  • The effects of exhaust gas recirculation on diesel engine combustion and soot/NOx emissions are numerically studied. The primary and secondary atomization is modelled using the wave instability breakup model. Autoignition of a diesel spray is modelled using the Shell ignition model. Soot formation is kinetically controlled and soot oxidation is represented by a model which account for surface chemistry. The NOx formation is based on the extended Zeldovich NOx model. Effects of injection timing and concentration of $O_{2}$ and CO$_{2}$ on the pollutant formation and the combustion process are discussed in detail.

공회전에서 스파크 점화기관 연소의 사이클 변동 해석 (Analysis of the Cyclic Variability in SI Engine at Idling)

  • 한성빈;장용훈
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.709-717
    • /
    • 2000
  • Cyclic variability has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under lean and highly diluted operation conditions. The cyclic combustion variations can be characterized by the pressure parameters, combustion parameters, and flame front parameters. The coefficient of variation in indicated mean effective pressure ($COV_{IMEP}$) defines the cyclic variability in indicated work per cycle, and it has been found that vehicle driveability problems usually result when $COV_{IMEP}$ exceeds about 10%. For analysis of the cyclic variability in SI engines at idling, the results show that cyclic variability by the $COV_{IMEP}$ or the coefficient of variation in maximum pressure can be explained and may be consequently reduced by the help of the optimum spark timings.

인돌렌-메탄올 대체연료의 연료 특성과 엔진성능에 관한 연구 (A Study on the Fuel Characteristics and Engine Performance of Indolene - Methanol Alternative Fuel)

  • 이민호;오율권;차경옥
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.9-16
    • /
    • 2004
  • A study of the propeny and performance effect of Indolene - Methanol Plus High Alcolhols (MPHA) has been completed. This study invested the measurement of fuel properties and performance parameters. The fuel properties investigated are distillation characteristics, heating valuer flash point, specific gravity and water tolerance. The performance parameters measured are minimum advance for best torque (MBT) spark timing, power output. The alcohol concentration was varied from 0 to 100 percent by volume in clear Indolene. The measurement of fuel properties indicated that, in general, Indolene - MPHA blends have higher water tolerance, similar specific gravity, similar flash point and different distillation characteristics compared to Indolene - Methanol blends. The performance parameters were measured using a single cylinder spark ignition engine at different compression ratios. The results of the performance measurements indicated that Indolene - MPHA blends have a higher MBT spark advance, similar power output.

  • PDF

터보펌프식 액체 로켓 엔진의 시동 과도 특성 해석 (Analysis of Transient Characteristics for Turbopump-fed Liquid Propellant Rocekt Engine in Start-up)

  • 손민;김덕현;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.34-37
    • /
    • 2010
  • 터보펌프식 액체 로켓 엔진에 대해 AMESim을 이용하여 1-D 시스템을 구성하고 시동 과도 특성을 해석하였다. 액체산소와 RP-1을 추진제로 사용하는 개방형 사이클에 대해 해석을 수행하였으며, 초기 시동시 가스발생기의 연료 밸브 개방 및 가스발생기 점화 타이밍과 시동 안정성의 관계에 관한 결과를 얻었다. 이러한 연구를 바탕으로 터보펌프식 액체 로켓 엔진 시스템의 최적 설계를 위해 시동시 특성 및 시동 절차를 고려해야 함을 확인 하였다.

  • PDF

직분식 예혼합 압축착화 디젤엔진의 운전조건과 연료조성에 따른 연소 및 배기 특성 (The Characteristics of Combustion and Exhaust Emission according to Operating Condition and Fuel Composition in a Direct Injection Type HCCI Diesel Engine)

  • 이기형;류재덕;이창식
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.10-16
    • /
    • 2004
  • The Homogeneous Charge Compression Ignition (HCCI) engine has advantage for reducing the NOx and P.M. simultaneously. Therefore, HCCI engine is receiving attention as a low emission diesel engine concept. This study was carried out to investigate the characteristics of combustion and exhaust emission for operating conditions in a direct injection type of HCCI engines such as supercharged and naturally aspirated using diesel fuel and additive. From the experimental result, we found that cool flame was always appeared and also it was difficult to control combustion characteristics by changing the injection timing in HCCI. In addition, at the lean air-fuel ratio and high speed range, it was observed that charging air pressure, additive or increasing intake air temperature is effective to increase combustion performance and reduce exhaust emission. We concluded that chemical reaction by the increasing intake air temperature or additive without physical improvement has limitation for reduction of exhaust emission.

The Effect of Hydrogen Enrichment on Exhaust Emissions and Thermal Efficiency in a LPG fuelled Engine

  • Park, Gyeung-Ho;Han, Sung-Bin;Chung, Yon-Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1196-1202
    • /
    • 2003
  • The concept of hydrogen enriched LPG fuelled engine can be essentially characterized as low emissions and reduction of backfire for hydrogen engine. The purpose of study is obtaining low-emission and high-efficiency in LPG engine with hydrogen enrichment. In order to determine the ideal compression ratio, a variable compression ratio single cylinder engine was developed. The objective of this paper is to clarify the effects of hydrogen enriched LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to minimize abnormal combustion. To maintain equal heating value, the amount of LPG was decreased, and hydrogen was gradually added. In a similar manner, the relative air-fuel ratio was increased from 0.8 to 1.3 in increment of 0.1, and the ignition timing was controlled to be at MBT each case.

디젤엔진의 운전인자 변화에 따른 엔진의 성능특성에 관한 연구 (A Study on Engine Performance Characteristics with Variation of Operating Condition in Diesel Engine)

  • 김기복
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.645-651
    • /
    • 2020
  • In this study, It is necessary that we should study on more effective use about reciprocating engines because there are huge increase of air pollution. Diesel Engine is operated by injecting fuel directly to combustion chamber with high pressure. Diesel Engine has greater thermal efficiency and durability than Gasoline Engine. Also, Diesel Engine emitted low harmful exhaust witch caused by Gasoline Engine. There are many ways to improve of performance and decrease of harmful exhaust by controlling injection timing, changing amount of fuel and engine speed and so on. Especially, development and application of common rail direct injection Engine cause the increase of thermal efficiency by controlling a various of operating conditions. In this study we analyze characteristics of performance by changing a various of operating conditions.