• Title/Summary/Keyword: Ignite

Search Result 134, Processing Time 0.026 seconds

The study of ignition characteristics of solid propellant using Arc Image Furnace (광학특성을 이용한 고체추진제 점화특성 연구)

  • Yoo, Ji-Chang;Kim, In-Chul;Jung, Jung-Yong;Ko, Seung-Won;Lee, Kyung-Joo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • The objective of the present work is to characterize design parameters of solid propellant ignitor for composite, double base, and nitramine propellants using arc image furnace. Arc image furnace and fiber optics surface reflectometer were used to measure ignition delay time and reflected optical energy of several compositions of composite, double base and nitramine base rocket propellant at different pressure levels each other. The order of ignitability was double base > composite> nitramine propellants at initial pressure of over 75 psia. The highest ignition energy was needed to ignite nitramine propellant, however, the ignition delay time decreased abruptly as the pressure increased up to the range of $75{\sim}400$ psia. The absorbtion of radiation energy could be increased by the addition of small amount of opacifiers as carbon black, ZrC, WC and burning catalyst.

Start-up and operation of Gasoline Fuel Processor for Isolated Fuel Cell System (독립형 연료전지 시스템을 위한 가솔린 연료프로세스의 시동 및 운전)

  • Ji, Hyunjin;Bae, Joongmyeon
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.76-85
    • /
    • 2016
  • This study introduces the system layout and control strategy necessary to start and operate a fuel processor in a wide range of temperatures where a gasoline was selected as the fuel of fuel processor considering logistic support of Korea Army. The autothermal reformig(ATR) catalyst is heated to light-off temperature by combustion method in the initial stage. In order to ignite the gasoline and air mixture stably, the glow plug is installed after ATR catalyst. When the catalyst is increased to light-off temperature, the reformer is operated from initiation to steady state conditions as follows: Partial oxidation(POX) mode, partial ATR mode, full ATR mode. Finally the start-up and control strategy is validated by the operational test of gasoline fuel processor at low and room temperature. As a result the gasoline fuel processor is able to start-up within 40 min and to produce the reformate gas which has 37 ~ 42 vol.%(dry basis) of $H_2$ and 0.3 vol.% of CO.

A Study on Mitigating Accidents for Liquid Hydrogen (액체수소 사고피해 완화기술에 대한 연구)

  • Jo, Young-Do;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.29-33
    • /
    • 2012
  • This paper is an attempt to give a concise overview of the state-of-the-art in the recent liquid hydrogen safety researches with unwanted event progress. The vessel of liquified hydrogen may fail and liquid hydrogen spilled. The hydrogen will immediately start to evaporate above a pool and make a hydrogen cloud. The cloud will disperse and can produce a vapor cloud explosion. The vessel containing the liquid hydrogen may not be able to cope with the boil-off due to heat influx, especially in case of a fire, and a BLEVE may occur. In equipment where it exists as compressed gas, a leak generates a jet of gas that can self-ignite immediately or after a short delay and produce a jet flame, or in case it ignites at a source a certain distance from the leak (delayed ignition), a flash fire occurs in the open and with confinement a deflagration or even detonation may develop. The up-to-date knowledge in these events, recent progress and future research are discussed in brief.

The Experimental Studies of Vacuum Residue Combustion in a Small Scale Reactor (소규모 반응로를 이용한 감압 잔사유지 연소실험)

  • Park Ho Young;Kim Young Ju;Kim Tae Hyung;Seo Sang Il
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.268-276
    • /
    • 2005
  • Vacuum Residue (VR) combustion tests were carried out with a 20 kg/hr (fuel feed rate) small scale reactor. The nozzle used was a steam atomized, internal mixing type. Compared to heavy oil, vacuum residue used in this work is extremely high viscous and contains high percentages of sulfur, carbon residue and heavy metals. To ignite atomized VR particles, it was necessary to preheat the reactor, and it has been done with LP gas. The axial and radial gas temperature, major species concentrations and solid sample were analyzed when varying the fuel feed rate. The main reaction zone of atomized VR-air flame in a reactor was anticipated within about 1 m from the burner tip by considering the profiles oi gas temperature, species concentration and particle size measured along with the reactor. At downstream, the thermally, fully developed temperature distribution was obtained. SEM photographs revealed that VR carbon particles collected from the reactor are porous and have many blow-holes on the particle surface.

A Study on the Inflammable Gas Explosion Triggered by the Electric Discharge Static Eliminator on Voltage Application Type (전압인가식 제전기의 방전에 의한 가연성가스의 폭발에 관한 연구)

  • Lee Chun Ha;Ok Kyoung Jea;Kim Jum-Ho;Kwon Byung-Duck;Cha Ha-Na;Yun Kea Won
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.22-26
    • /
    • 2004
  • The static eliminator is used for prevention of disasters by static discharge, improvement of production efficiency, protection of a sensitive electronic element on the discharge of static, and it is handled for elimination of static in the painting plant, the film manufacturing plant, the producing semi-conductor factory. This study described on the explosion appearance by discharge phenomena on the voltage input type eliminator's ion generation bar of inflammable gas through an experimental tests. It was used Hydrogen, Ethylene, Propane, Methane gas with the inflammable gas and it was studied on the ignition phenomena by the length of ion-generation static bar, the number of ion-generation electrode and the variation of input voltage to the ion-generation electrode. As a result of this study it was confirmed that the shorter of the bar's length, the greater of explosion danger. And it is considered that there will not ignite at general using inflammable gas, in case of more than 900 mm bar and one electrode.

The Arc Dispersion Properties by Switching of High Sensitivity Type RCD Contacts (고감도형 누전차단기 접점의 스위칭에 따른 아크 비산 특성)

  • Choi Chung-Seog;Kim Dong-Woo;Kim Young-Seok;Lee Ki-Yeon
    • Fire Science and Engineering
    • /
    • v.19 no.2 s.58
    • /
    • pp.63-68
    • /
    • 2005
  • In this study, the arc dispersion properties were analyzed according to switching of high sensitive type Residual Current Protective Device(RCD) contacts. Arc dispersion and ignition process was taken by high speed imaging system(HSIS). In this experiment, electric lamps(60 W) and heaters(950 W) were connected in parallel as loads. In case of normal RCD, it took about 2.3(ms) from the generation of arc to the extinction of uc. When arc was dispersed in normal RCD, it did not ignite cotton. Whereas, in case of RCD deteriorated by NaCl solution, the range of arc dispersion was wider and the arc lasted for 3.3[ms] more compared to normal RCD. And the arc ignited cotton. In order to prevent accidents caused by RCD, we should be careful of environmental factors, such as dust and humidity, and the parts of RCD should be used as incombustible materials.

A Study on the Evaporation and Ignition of Single Fish Oil Droplet (단일액적 어유의 증발과 착화에 관한 연구)

  • Ra, Jin-Hong;Jang, Jae-Eun;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.64-68
    • /
    • 1991
  • In this paper, to percuss whether fish oil can substitute for marine fuel oil, the characteristics on the evaporation and ignition of 3 fish oils, Sardine oil, File fish oil and Alaska pollac oil, were investigated experimentally by suspending single fish oil droplel in hot atmosphere, and experiments on methanol and light oil were also carried out to compare the characteristics. The results abtained are summarized as follow; 1) Evaporation and ignition phenomena on the methanol and light oil by the present experimental method agreeded with the results of the earlier investigation. 2) The characteristic on evaporation and ignition of all 3 fish oils took the same pattern; in late stage of evaporation at atmospheric Temperature 55$0^{\circ}C$ droplet rapidly expanded and contracted, and then remained solid corbide, but in case of $650^{\circ}C$ rapidly expanded and ignitied, and then completly burned non-remained solid carbide. 3) As fish oil mixed with light oil (50% weight), in beginning stage of evaporation droplet depended on the characteristics of light oil, but in end stage depended on fish oil. 4) Ignition temperature of fish oil droplets was about 47$0^{\circ}C$, higher than about 25$0^{\circ}C$ of light oil, but atmospheric temperature to ignite droplet was about $650^{\circ}C$, lower than about 75$0^{\circ}C$ of light oil.

  • PDF

Numerical Study of Normal Start and Unstart Processes In a Superdetonative Speed Ram Accelerator (초폭굉속도 램가속기의 정상발진과 불발과정에 대한 수치해석)

  • Moon, Guee-Won;Jeung, In-Seuck;Choi, Jeong-Yeol;Seiler, Friedrich;Patz, Gunther;Smeets, Gunter;Srulijes, Julio
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.123-132
    • /
    • 2002
  • A numerical study was conducted to investigate the combustion phenomena of normal start and unstart processes based on ISL's RAMAC 30 experiments with different diluent amounts and fill pressures in a ram accelerator. The initial projectile launching speed was 1.8 km/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with 5 $CO_2$ or 4 $CO_2$. Experiments with same condition except for projectile surface material demonstrated that ignition was successful with an aluminum projectile, but no combustion was observed in case of a steel projectile. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1.8 km/s, as was found in the experiments using a steel projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the normal start and unstart processes found in the experiments with an aluminum projectile. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations coupled with a Baldwin-Lomax turbulence model and detailed chemistry reaction equations of $H_2/O_2/CO_2$ suitable for high-pressure gaseous combustion were considered. The governing equations were discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit, time accurate integration method. The numerical results matched almost exactly to the experimental results. As a result, it was found that the normal start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF

Study on Ignition-gas Injection for Decrease of Differential Pressure in Chamber of Cannon (화포 약실 내 차압 감소를 위한 점화제 주입 연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Yoo, Seong-Young;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.949-952
    • /
    • 2011
  • Study on differential pressure in the chamber of cannon by adjusting the mass flow of ignition-gas has been conducted using the 1-D interior ballistics numerical code called IBcode. In case of large-caliber cannon, high temperature ignition-gas is injected to the chamber through the side hole of the primer to ignite the propellant. Therefore, mass flow of injected ignition-gas affects the propellant combustion in the chamber. Mass flow of each side hole of the current primer was uniformly distributed. In this study, differences of propellant combustion with different mass flow of each side hole have been imposed. Results in case of the mass flow increase in the direction to the base show that the differential pressure decreases compared to the uniformed mass flow.

  • PDF

Study on 1,200 N-class bipropellant rocket engine using decomposed $H_2O_2$ and kerosene (분해된 과산화수소와 케로신을 이용한 1,200 N 급 이원추진제 로켓 엔진의 연구)

  • Jo, Sung-Kwon;An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Sung;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.69-78
    • /
    • 2010
  • As part of preliminary study for development of 1,200 N-class bipropellant rocket engine with the concentrated hydrogen peroxide, bipropellant engine elements were designed and experimentally tested. The catalysts of $MnO_2$ and $MnO_2$ added Pb as an additive were compared to achieve high decomposition performance and the catalytic reactor with $MnO_2$ added Pb was designed and its decomposition efficiency of 97.2% was achieved. The autoignition tests of kerosene by decomposed hydrogen peroxide were carried out under various equivalence ratios to ignite without additional ignition sources. Autoignition were achieved in all experimental conditions and $C^*$ efficiencies at each condition were at or above 90%. From the measured thrust results, the highest value was 830 N which is in corresponds with 1,035 N at vacuum level assuming $C^*$ efficiency equals $I_{sp}$ efficiency.