• Title/Summary/Keyword: Ifenprodil

Search Result 4, Processing Time 0.016 seconds

N-retinylidene-N-retinylethanolamine degradation in human retinal pigment epithelial cells via memantine- and ifenprodil-mediated autophagy

  • Jae Rim Lee;Kwang Won Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.449-456
    • /
    • 2023
  • N-methyl-D-aspartate (NMDA) receptors are ionic glutamine receptors involved in brain development and functions such as learning and memory formation. NMDA receptor inhibition is associated with autophagy activation. In this study, we investigated whether the NMDA receptor antagonists, memantine and ifenprodil, induce autophagy in human retinal pigment epithelial cells (ARPE-19) to remove N-retinylidene-N-retinylethanolamine (A2E), an intracellular lipofuscin component. Fluorometric analysis using labeled A2E (A2E-BDP) and confocal microscopic examination revealed that low concentrations of NMDA receptor antagonists, which did not induce cytotoxicity, significantly reduced A2E accumulation in ARPE-19 cells. In addition, memantine and ifenprodil activated autophagy in ARPE-19 cells as measured by microtubule-associated protein 1A/1B-light chain3-II formation and phosphorylated p62 protein levels. Further, to understand the correlation between memantine- and ifenprodil-mediated A2E degradation and autophagy, autophagy-related 5 (ATG5) was depleted using RNA interference. Memantine and ifenprodil failed to degrade A2E in ARPE-19 cells lacking ATG5. Taken together, our study indicates that the NMDA receptor antagonists, memantine and ifenprodil, can remove A2E accumulated in cells via autophagy activation in ARPE-19 cells.

Effects of Spermine on Quisqualate-induced Excitotoxicity in Rat Immature Cortical Neurons (흰쥐 미숙 대뇌피질 신경세포에서 Quisqualate로 유발된 흥분성 세포독성에 대한 spermine의 영향)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.535-540
    • /
    • 1999
  • Glutamate (Glu) receptor-mediated excitoxicity has been implicated in many acute and chronic types of neurological disorders. Exposure of mature rat cortical neurons (15-18 days in culture) to the various concentrations of Glu resulted in a marked neuronal death, whereas immature rat cortical neurons (4∼5 days in culture) were resistant to the Glu-induced toxicity. Glu receptor subtype-specific agonists showed differential extent of toxicity in the immature neurons. The neurons treated with NMDA or kainate (KA) did not exhibit damage. However, quisqualate (QA) treatment induced a considerable cell death (36.1%) in immature enurons. The non-NMDA antagonist DNQX did not reduce this response. Interestingly, the QA-induced toxicity was potentiated by spermine in a concentration-dependent manner. Again, the spermine-enhanced damage was not altered by the polyamine antagonist ifenprodil. Taken together, unlike NMDA or KA, QA can induce neurotoxicity in immature rat cortical neurons and the QA-induced toxicity was potentiated by spermine. The lack of antagonizing effects of DNQX and ifenprodil on QA-induced toxicity and the potentiated toxicity by spermine, respectively, implies that both QA receptor and the polyamine site of NMDA receptor may not mediate the neurotoxicity observed in this study, and that a distinct mechanism(s) may be involved in excitotoxicity in immature neurons.

  • PDF

Electrophysiological Characterization of AMPA and NMDA Receptors in Rat Dorsal Striatum

  • Jeun, Seung-Hyun;Cho, Hyeong-Seok;Kim, Ki-Jung;Li, Qing-Zhong;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.209-214
    • /
    • 2009
  • The striatum receives glutamatergic afferents from the cortex and thalamus, and these synaptic transmissions are mediated by ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl D-aspartate (NMDA) receptors. The purpose of this study was to characterize glutamate receptors by analyzing NMDA/AMPA ratio and rectification of AMPA and NMDA excitatory postsynaptic currents (EPSCs) using a whole-cell voltage-clamp method in the dorsal striatum. Receptor antagonists were used to isolate receptor or subunit specific EPSC, such as (DL)-2-amino-5-phosphonovaleric acid (APV), an NMDA receptor antagonist, ifenprodil, an NR2B antagonist, CNQX, an AMPA receptor antagonist and IEM-1460, a GluR2-lacking AMPA receptor blocker. AMPA and NMDA EPSCs were recorded at - 70 and + 40 mV, respectively. Rectification index was calculated by current ratio of EPSCs between + 50 and - 50 mV. NMDA/AMPA ratio was 0.20${\pm}$0.05, AMPA receptor ratio of GluR2-lacking/GluR2-containing subunit was 0.26${\pm}$0.05 and NMDA receptor ratio of NR2B/NR2A subunit was 0.32${\pm}$0.03. The rectification index (control 2.39${\pm}$0.27) was decreased in the presence of both APV and combination of APV and IEM-1460 (1.02${\pm}$0.11 and 0.93${\pm}$0.09, respectively). These results suggest that the major components of the striatal glutamate receptors are GluR2-containing AMPA receptors and NR2A-containing NMDA receptors. Our results may provide useful information for corticostriatal synaptic transmission and plasticity studies.

The Occurrences of Pharmaceutical and Personal Care Products (PPCPs) in Mankyung River, South Korea (만경강 수중에서 신체보초제품(PPCPS)의 잔류)

  • Kim, Joon-Woo;Kim, Jong-Gu;Jang, Hyo-Sang;Cho, Hyeon-Seo;Takao, Yuji;Arizono, Koji
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.245-254
    • /
    • 2009
  • In recent years, environmental pollution by phannaceuticals and personal care products (PPCPs) in the aquatic environment is of great concern worldwide. Recent studies have been reported to occur in a variety of environmental organisms such as surface, drinking and ground water, soils, sediments and hospitals. The purpose of this study was to evaluate the occurrence and environmental behavior of fourteen human PPCPs in surface waters of Mankyung River in South Korea. We were conducted to field survey for water quality and PPCPs analysis at November, 2006. PPCPs were analyzed by liquid chromatograph coupled with a tandem mass spectrometer (HPLC-MS/MS). The concentration of COD was measured to be 2.37$\sim$19.71 mg/L, which was belong to 4$\sim$5 grade in water quality criteria of lake. Station 2 that there is no pollution in upper stream, was appeared to lower concentration. The concentration of TN and TP, that is cause matter of eutrophication, were found to be 7.78$\sim$35.42 mg/L and 0.08$\sim$0.95 mg/L, respectively, which were exceeding 5 grade in Lake water quality criteria. The 11 kind of PPCPs compounds except levofloxacin and triclosan were detected to Mankyung river. PPCPs concentrations of STP(Sewer Treatment Plant) effluents and aquatic environment in Mankyung river have been detected in the range from dozens of ng/L to hundreds of ${\mu}g/L$ that by order of atenolol, carbamazepine, propranolol, Ibuprofen, erythromycin, ifenprodil, clarithromycin, mefenamic acid, fluconazole, indomethacin, disopyramide. PPCPs concentration of Station 1 and 5, which was influenced by Jeonju STP and Wanju STP, was detected high values. Station 2 that there is no pollution, showed lower values. Station 3 which joined Gosan stream and Jeonju stream and station 4 which influenced by stock wastewater was detected to low values.