• Title/Summary/Keyword: Idle Vibration

Search Result 76, Processing Time 0.024 seconds

A Study on an Optimal Design of Engine Mount System (엔진 마운트계의 최적설계에 관한 연구)

  • 황원걸
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.16-26
    • /
    • 1998
  • The major effective factors on the ride quality of a vehicle are the vibration and noise of the engine and drive system. Engine contributes about 80% of the vibration and noise in the vehicle, and exciting forces of the engine are transmitted onto the vehicle frame through the engine mount. This paper studies the vibration reduction of a vehicle through the improvement of the engine mount. A computer program for optimal design is developed and the engine mount conditions are optimized to reduce the WRMS of PSD of acceleration at the driver's seat, which are caused by the exciting forces at the idle speed. Design variables are selected as the stiffness, mount angle and the location of the engine mount rubber. It is shown through computer simulation that the PSD of acceleration at the driver's seat can be improved by redesigning the engine mount system.

  • PDF

Parametric Study of DMFW to Reduce Torsional Vibration of Power Train System (구동계 비틀림진동저감을 위한 이중질량플라이휠의 파라미터해석)

  • 이강우;정재훈;송영래;지태한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.405-410
    • /
    • 2002
  • In this paper, numerical method of evaluating the influence of Dual Mass Flywheel(DMFW) to the torsional vibration of the automotive power train system is developed. And we applied the procedure to the currently being developed HMC's DMFW attached to an FF car to find out the best performance characteristics during the Tip-in/Tip-out operating condition. In doing this we compared the numerical results with the experimental results and Performed Parametric studies. We find out that the torsional vibrational characteristics of power train system can be significantly improved when we optimally choose DMFW, and the developed numerical procedure could be used as valuable tools in developing new DMFW.

  • PDF

Optimal Stiffness Design of Joint Structures of a Vehicle for Vibration

  • Lee, Sang-Beom
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.66-69
    • /
    • 1998
  • Idle shake vibration characteristics of a vehicle are mainly influenced not only by the stiffnesses of the beam type structures such as pillars and rockers, but also by the stiffnesses of the joint structures, at which several beam structures are jointed together. In the early design stage of the car body structure a simple FE model has been used, in which joints are modeled as linear springs to represent the stiffnesses of the joint structures. In this paper a new modeling technique for the joint structure is presented using an equivalent beam, instead of using a spring. The modeling technique proposed is utilized to design optimal joint structures that meet the required vibration performance of the total vehicle structure.

  • PDF

A study on reduction of structural vibration of an intake manifold system (흡기다기관 시스템의 구조진동 저감에 대한 연구)

  • 윤성호;이귀영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.69-82
    • /
    • 1992
  • Vibration of intake menifold is important as it could worsen the noise levels radiated from surface itself and support bracket, and it eventually leads to the failures of a Throttle Position Sensor and an Idle Air Control Valve. In this study, structural modification method is proposed to reduce structural vibration of an intake manifold system. At first, vibration problems are identified through tests on a running engine. Then modal data acquired by modal testing and finite element analysis are helpful to understand vibration mechanism of the system, and used as the design guide when structural modifications are attempted. After the system model is validated by comparison of the modal data obtained from analysis and experiment, iterative calculations are performed to find optimized structure of the system by finite element analysis. As a result, a newly designed plenum bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is changed in terms of bolting position, thickness, shape, and minimum weight increase. Finally, it is shown that a new design achieves a significant reduction of vibration of an intake manifold system and it is confirmed by tests on a running engine.

  • PDF

Correlation Analysis of TPA Output Variables in a Pneumatic Active Engine Mount System (공압식 능동형 엔진마운트 시스템의 TPA 출력변수간의 상관관계 분석)

  • Park, Hyeol-Woo;Lee, Jae-Cheon;Choi, Jae-Yong;Kim, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • A PAEM(Pneumatic Active Engine Mount) system has been developed to improve NVH performance of a SUV in idle state. Control objective to attenuate the vibration of a vehicle should be determined prior to the design of control algorithm. This study presents the correlation analysis of output variables of PAEM system by means of TPA(Transfer Path Analysis) using experimental data obtained by vehicle test. The analysis results show that the vibration of vertical direction is more serious than those of longitudinal and lateral direction of the vehicle, and that the correlation between the vibration of front seat rail and that of steer wheel is highest. In conclusion, the vibrations of front seat rail and steer wheel in vertical direction should be considered as the control objectives of the PAEM.

Noise Control of Hard Disk Drive Using Structural Mobility Analysis (STRUCTURAL MOBILITY 분석을 통한 하드 디스크 드라이브의 소음제어(현장개발사례: SAMSUNG HDD 'SPINPOINT V20/P20 SERIES' ))

  • Kang, Seong-Woo;Han, Yun-Sik;Hwang, Tae-Yeon;Son, Young;Oh, Dong-Ho;Pham, Tho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.911-916
    • /
    • 2001
  • Structural acoustic modification method based on the structural mobility analysis is applied to reduce the structure-borne noise radiated from hard disk drive system. Sound intensity techniques and ODS(Operational Deflection Shape) techniques are also used in order to provide the structural acoustic information for the mobility modification. The sound intensity is for the acoustic visualization of the noise source locations, and the ODS is for the visualization of the vibration pattern and its dynamic characteristics of the noise sources. Using visualization information of sound and vibration, local structural input mobility is reduced in the frequency band of interest by designing asymmetrical wave-stringer structure in the wave-number domain as well as frequency domain. The overall sound pressure level is reduced by 4dB and its controlled sound power radiated from the disk drive is proved to under 2.8Bel in idle-spinning mode and 3.1 Bel in random-seeking mode, which are the lowest noise levels in the hard disk drive industry.

  • PDF

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.

Study of Apparent Mass and Apparent Eccentric Mass to Vertical Whole-body Vibration by Using Strain-gage Type Six-axis Force Plate (6축 힘측정판을 이용한 수직방향 전신진동에 대한 겉보기질량 및 겉보기편심질량에 대한 고찰)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.897-904
    • /
    • 2011
  • When whole-body is exposed to vertical vibration, asymmetry shape of human body affects the response on the translational(fore-aft, lateral, vertical) and rotational(roll, pitch, yaw) motion. While the translational motion has been studied with various titles, it has been rare to study the rotational motion of human body exposed to vertical excitation because of lack of experimental equipment. This study was performed by using a 6-axis force plate installing strain gage type sensors for the rotational response. Sixteen male subjects were exposed to vertical vibration on rigid seat in order to investigate apparent mass of three translational motion and apparent eccentric mass of three rotational motion. Random signal was generated to make excitation vibration which was on an effective frequency range of 3~40 Hz, and magnitude of 0.224 m/$s^2$ r.m.s. The frequency range and magnitude used was selected for the vibration of passenger vehicle on idling condition. As the result, cross-axis apparent masses of fore-and-aft and lateral direction were not significant showing 20 % and 3 % of vertical apparent mass relatively. And apparent eccentric mass of pitch motion was dominant when compared to that of roll and yaw motion, which is reasoned by asymmetry direction of human body sitting on a seat.

Design of automotive engine cooling fan and study on noise reduction through modification of system (자동차용 냉각팬의 설계와 시스템 개선을 통한 저소음화 연구)

  • 김병주;강상규;김규영;이덕주;이재영;이덕호;신동수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.196-201
    • /
    • 2003
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore, the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, experimental study on the fan and system was carried out and brought a successful result of performance and noise from a designed fan. And through the modification of the fan system, the fan produced more flow rate and became less noisy.

  • PDF

Development of an Intake E-CVVT Noise for the Medium-sized Sedan Vehicle (중형 세단 차량의 흡기 전동 CVVT 소음 개발)

  • Lee, Jong Kyu;Lee, Hyung Min;Lee, Hae Seung;Kwon, O Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.341-346
    • /
    • 2014
  • Intake E-CVVT noise, generally caused by collision sound of roller and cage clearance at idle and driving condition, is considerable source of annoyance in passenger cars using the gasoline engine. Main source of this noise is the cam torque variation of an intake E-CVVT system, and can be controlled by clearance decrease such as backlash reduction, but which may increase the manufacturing cost. Thus in this paper, most effective solution for low noise intake E-CVVT was achieved through not only reduction of backlash and cam angular acceleration but also improvement of vehicle transfer system, which is optimal configuration through acoustic sensitivity optimization of engine mount support bracket.

  • PDF