• Title/Summary/Keyword: Identification Cost

Search Result 599, Processing Time 0.023 seconds

Magnitude of Patient's Cost-sharing for Hospital Services in the National Health Insurance in Korea (의료보험 환자가 병원진료시 부담하는 본인부담 크기)

  • 김창엽;이진석;강길원;김용익
    • Health Policy and Management
    • /
    • v.9 no.4
    • /
    • pp.1-14
    • /
    • 1999
  • The purpose of this study was to estimate the magnitude of patient's actual cost-sharing for hospital services in the National Health Insurance which has been estimated with only a few hospitals or limited number of patients. Also we aimed at analysis of factors influencing the magnitude. Sources of analyzed data were two databases. 1997 medical benefits record of the National Federation of Medical Insurance and 1997 Statistics for Hospital Management from the Korea Institute of Health Services Management(KIHM). We merged two databases and related records for 224 hospitals. based on the identification details of each hospital. The average percent of patients' cost-sharing was 51.7% of total hospital revenues from the insurance. with 40.3% of revenue in inpatient and 67.4% in outpatient. respectively. The contributing hospital factors to the magnitude of cost-sharing were size of hospitals. teaching status. location. number of employed physicians. etc. Larger and university hospital. urban location. and with more physicians were positively correlated with higher level of cost-sharing. Additionally, the higher the expenses of inpatient's treatment was, the higher the size of patient's cost-sharing was. These findings suggest that present level of patients' cost-sharing is quitely high and it is urgent to reduce the patient's cost-sharing to the reasonable level. It would be necessary to extend the coverage of insurance benefits and to develop policies focusing on larger hospitals and inpatient services.

  • PDF

Structural identification based on substructural technique and using generalized BPFs and GA

  • Ghaffarzadeh, Hosein;Yang, T.Y.;Ajorloo, Yaser Hosseini
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • In this paper, a method is presented to identify the physical and modal parameters of multistory shear building based on substructural technique using block pulse generalized operational matrix and genetic algorithm. The substructure approach divides a complete structure into several substructures in order to significantly reduce the number of unknown parameters for each substructure so that identification processes can be independently conducted on each substructure. Block pulse functions are set of orthogonal functions that have been used in recent years as useful tools in signal characterization. Assuming that the input-outputs data of the system are known, their original BP coefficients can be calculated using numerical method. By using generalized BP operational matrices, substructural dynamic vibration equations can be converted into algebraic equations and based on BP coefficient for each story can be estimated. A cost function can be defined for each story based on original and estimated BP coefficients and physical parameters such as mass, stiffness and damping can be obtained by minimizing cost functions with genetic algorithm. Then, the modal parameters can be computed based on physical parameters. This method does not require that all floors are equipped with sensor simultaneously. To prove the validity, numerical simulation of a shear building excited by two different normally distributed random signals is presented. To evaluate the noise effect, measurement random white noise is added to the noise-free structural responses. The results reveal the proposed method can be beneficial in structural identification with less computational expenses and high accuracy.

A systematic method from influence line identification to damage detection: Application to RC bridges

  • Chen, Zhiwei;Yang, Weibiao;Li, Jun;Cheng, Qifeng;Cai, Qinlin
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.563-572
    • /
    • 2017
  • Ordinary reinforced concrete (RC) and prestressed concrete bridges are two popular and typical types of short- and medium-span bridges that accounts for the vast majority of all existing bridges. The cost of maintaining, repairing or replacing degraded existing RC bridges is immense. Detecting the abnormality of RC bridges at an early stage and taking the protective measures in advance are effective ways to improve maintenance practices and reduce the maintenance cost. This study proposes a systematic method from influence line (IL) identification to damage detection with applications to RC bridges. An IL identification method which integrates the cubic B-spline function with Tikhonov regularization is first proposed based on the vehicle information and the corresponding moving vehicle induced bridge response time history. Subsequently, IL change is defined as a damage index for bridge damage detection, and information fusion technique that synthesizes ILs of multiple locations/sensors is used to improve the efficiency and accuracy of damage localization. Finally, the feasibility of the proposed systematic method is verified through experimental tests on a three-span continuous RC beam. The comparison suggests that the identified ILs can well match with the baseline ILs, and it demonstrates that the proposed IL identification method has a high accuracy and a great potential in engineering applications. Results in this case indicate that deflection ILs are superior than strain ILs for damage detection of RC beams, and the performance of damage localization can be significantly improved with the information fusion of multiple ILs.

Design and Analyses of Security Mechanism with Low Cost RFID Tag (저비용 RFID 태그를 위한 보안 메카니즘의 분석 및 설계)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.681-682
    • /
    • 2011
  • RFID technique has been applied in high-security and high-integrity settings such as national defense, healthcare, and citizen identification. We proposed especially the privacy of sensitive data, various cryptographic techniques applicable to low-cost RFIDs in order to enhance the security of RFID.

  • PDF

Neural Network-Based Human Identification Using Teeth Contours (치아 윤곽선 정보를 이용한 신경회로망 기반 신원 확인 방안)

  • Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.275-282
    • /
    • 2013
  • This paper proposes a method for human identification using teeth contours extracted from dental images that are captured from the frontal views of subjects each of who opens his or her mouth slightly. Each dental image has a black-colored region containing the subject's teeth contours which are usually different from subject to subject. This means that this black-colored region has bio-mimetic information useful for human identification. The basic idea of the method is to extract the upper and lower teeth contours from the dental image of each subject and to encode their geometric patterns using a back-propagation neural network model. After acquiring 400 teeth images form 10 university students, we used 300 images for the training data of the neural network model and 100 images for its verification. Experimental results have shown that the proposed neural network-based method can be used as an alternative solution for identification among a small group of humans with a low cost and simple setup.

A Class of Recurrent Neural Networks for the Identification of Finite State Automata (회귀 신경망과 유한 상태 자동기계 동정화)

  • Won, Sung-Hwan;Song, Iick-Ho;Min, Hwang-Ki;An, Tae-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.33-44
    • /
    • 2012
  • A class of recurrent neural networks is proposed and proven to be capable of identifying any discrete-time dynamical system. The applications of the proposed network are addressed in the encoding, identification, and extraction of finite state automata. Simulation results show that the identification of finite state automata using the proposed network, trained by the hybrid greedy simulated annealing with a modified error function in the learning stage, exhibits generally better performance than other conventional identification schemes.

Identification of Fractional-derivative-model Parameters of Viscoelastic Materials Using an Optimization Technique (최적화 기법을 이용한 점탄성물질의 분수차 미분모델 물성계수 추정)

  • Kim, Sun-Yong;Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1192-1200
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature. However, the identification procedure of the four-parameter is very time-consuming one. In this study a new identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured frequency response functions(FRF) coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment step. A numerical example shows that the proposed method is useful in identifying the viscoelastic material parameters of fractional derivative model.

Identification of fractional-derivative-model parameters of viscoelastic materials using an optimization technique (최적화 기법을 이용한 점탄성물질의 유리미분모델 물성값 추정)

  • Kim, Sun-Yong;Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1235-1242
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the nonlinear dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature with fewer parameters than conventional spring-dashpot models. However the identification procedure of the four-parameter is very time-consuming one. An efficient identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured FRFs coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment. A numerical example shows that the proposed method is efficient and robust in identifying the viscoelastic material parameters of fractional derivative model.

  • PDF

Efficient Time Domain Aeroelastic Analysis Using System Identification

  • Kwon, Hyuk-Jun;Kim, Jong-Yun;Lee, In;Kim, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.52-60
    • /
    • 2005
  • The CFD coupled aeroelastic analyses have significant advantages over linear panel methods in their accuracy and usefulness for the simulation of actual aeroelastic motion after specific initial disturbance. However, in spite of their advantages, a heavy computation time is required. In this paper, a method is discussed to save a computational cost in the time domain aeroelastic analysis based on the system identification technique. The coefficients of system identification model are fit to the computed time response obtained from a previously developed aeroelastic analysis code. Because the non-dimensionalized data is only used to construct the model structure, the resulting model of the unsteady CFD solution is independent of dynamic pressure and this independency makes it possible to find the flutter dynamic pressure without the unsteady aerodynamic computation. To confirm the accuracy of the system identification methodology, the system model responses are compared with those of the CFD coupled aeroelastic analysis at the same dynamic pressure.

Identification of the Mechanical Resonances of Electrical Drives for Automatic Commissioning

  • Pacas Mario;Villwock Sebastian;Eutebach Thomas
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • The mechanical system of a drive can often be modeled as a two- or three-mass-system. The load is coupled to the driving motor by a shaft able to perform torsion oscillations. For the automatic tuning of the control, it is necessary to know the mathematical description of the system and the corresponding parameters. As the manpower and setup-time necessary during the commissioning of electrical drives are major cost factors, the development of self-operating identification strategies is a task worth pursuing. This paper presents an identification method which can be utilized for the assisted commissioning of electrical drives. The shaft assembly can be approximated as a two-mass non-rigid mechanical system with four parameters that have to be identified. The mathematical background for an identification procedure is developed and some important implementation issues are addressed. In order to avoid the excitation of the system with its natural resonance frequency, the frequency response can be obtained by exciting the system with a Pseudo Random Binary Signal (PRBS) and using the cross correlation function (CCF) and the auto correlation function (ACF). The reference torque is used as stimulation and the response is the mechanical speed. To determine the parameters, especially in advanced control schemes, a numerical algorithm with excellent convergence characteristics has also been used that can be implemented together with the proposed measurement procedure in order to assist the drive commissioning or to achieve an automatic setting of the control parameters. Simulations and experiments validate the efficiency and reliability of the identification procedure.