• Title/Summary/Keyword: Iced storage

Search Result 13, Processing Time 0.019 seconds

Quality Evaluation of Mackerel Fillets Stored under Different Conditions by Hyperspectral Imaging Analysis

  • Azfar Ismail;Jiwon Ryu;Dong-Gyun Yim;Ghiseok Kim;Sung-Su Kim;Hag Ju Lee;Cheorun Jo
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.840-858
    • /
    • 2023
  • This study was designed to compare the quality changes in mackerel fillets stored under different conditions by using hyperspectral imaging (HSI) techniques. Fillets packaged in vacuum were stored for six days under five different conditions: refrigerated at 4℃ (R group); iced at 5±3℃ (I group); kept at an ambient of 17±2℃ (A group); frozen at -18℃ for 24 h and thawed in a refrigerator at 4℃ for 5 h on the sampling day (FTR group); FTR thawed in tap water instead of thawing in a refrigerator (FTW group). The FTR group had the lowest total bacterial count, drip loss, 2-thiobarbituric acid reactive substances, volatile basic nitrogen, and texture profile analysis values among groups during the entire storage period (p<0.05). Scanning electron microscopy revealed that the FTR group had less damage, while the other groups had shrunken muscle tissues. HIS integrated with the partial least squares model yielded reliable and efficient results, with high R2cv values, for several quality parameters of the mackerel fillets. Overall, the FTR group, involving freezing and thawing in a refrigerator, appears to be the most favorable option for maintaining the quality of mackerel fillets, which could be practically implemented in the industry. HSI is a suitable and effective technique for determining the quality of mackerel fillets stored under different conditions.

Effect of Postharvest Treatments on Storage Quality of Buckwheat Sprouts (메밀 새싹채소의 저장품질에 대한 수확 후 처리공정 효과)

  • Lee, Hyun-Hee;Hong, Seok-In;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.98-104
    • /
    • 2011
  • The storage quality of fresh buckwheat sprouts, as influenced by pretreatment and packaging within processing steps, was investigated to establish appropriate postharvest handling treatment for the commodity. After harvest, the sprouts were dipped in chlorine water (100 ppm), rinsed twice with clean water, pre-cooled with iced water, de-watered, and packed in plastic trays. Sprout samples taken from each processing step were stored at $5^{\circ}C$ for 6 days to measure quality attributes. Viable cell counts of mesophilic aerobes and coliform bacteria were lower by about 1 log scale in the postharvest treated samples compared to an untreated control, although the initial microbial reduction due to the postharvest treatments was offset by cell growth during storage. All sprout samples showed a decrease of fresh weight by approximately 4% after 6 days of storage. However, moisture and soluble solid contents were maintained at the initial levels of the sprouts. No significant difference in surface color was observed among sample treatments. For sensory properties including discoloration, wilting, decay, and visual quality, there were no significant differences among sample treatments. The present results suggest that proper postharvest processing treatments can exert positive effects on extending the shelf-life of fresh buckwheat sprout.

Shalf Life Enhancement of Minimally Processed Fruits and Vegetables

  • Kim, Dong-Man
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 1993.12a
    • /
    • pp.6-9
    • /
    • 1993
  • According to changes in population, economic conditions, life-stile and eating habits, the frui ts and vegetables market wi 11 be shi fted from processed (i. e. , canned) to fresh. Undressed fresh produce, consisting of washed, disinfected and peeled fruits and vegetables that either sliced or grated, are currently increased in demand by retail and institutional market which use them as salad components or in ready-to use foods, Main attributes of minimally processed fruits and vegetables are convenience and fresh-like quality. Minimally processed Products readily deteriorate in quality, especially color and texture, as a result of endogeneous enzyme enhanced respiration and microorganisms which lead to reduced shelf Iife. According to changes in population, economic conditions, life-stile and eating habits, the frui ts and vegetables market wi 11 be shi fted from processed (i. e. , canned) to fresh. Undressed fresh produce, consisting of washed, disinfected and peeled fruits and vegetables that either sliced or grated, are currently increased in demand by retail and institutional market which use them as salad components or in ready-to use foods, Main attributes of minimally processed fruits and vegetables are convenience and fresh-like quality. Minimally processed Products readily deteriorate in quality, especially color and texture, as a result of endogeneous enzyme enhanced respiration and microorganisms which lead to reduced shelf Iife. Thus. to prevent these undesirable changes , val'ious techniques such as controlled atmosphere (CA) storage, modified atmosphere OIA) storage, including vacuum packaging have been receiving considerable attention, Although milch research has been done to find optimal conditions for whole intact frui ts and vegetables, only limi ted information is avai lable on fresh cut. and other minimally processed products. 81 iced frui ts exhibi t increas~d ethylene production and respiration compal'ed to whole f, 'uits during distribution in response to tissue damage. As a result, accelerated senescence and enzymatic browning OCCUI', Recent l'esearch on minimally processed fl'uits and vegetables has mainly focused on methods to inhibit browning, due to ban on use of sulfur dioxide, In order to retard or prevent these physiological changes, val'ious al ternatives, reducing agents. acidulants, chelating agents and inol'ganic sal ts have been evaluated for use on fresh cut fl'ui ts. Al though some agents were effective replacement for sulfur dioxide. consum$\textregistered$I'S demandless use of chemical on such products. Shel~ life of minimally processed products has been extended by inhibition of metabolic reactions associated with loss of quality and by inhibition of aerobic spoilage caused by wide variety of microorganisms. Appl ication of ~I.-\ packaging, including vacuum packaging, retards the rate of respiration, prevents growth of aerobic spoilage organisms, inhibits oxidation and color deterioration. Tissue softening is another major problem in minimally processed products because enzymes re 1 a ted to ce 11 wa 11 degrada t i on are not inactivated. Various treatments have been investigated for retardation of the softening of sliced products. Some studies have concentrated on the application of an active packaging system with ~I, l. packaging and calcium infi 1 tration as possible measures to retain firmness of processed products. In my opinion, one important step for production of minimally processed frui ts wi th favorabl e color of cut surface and firm texture is the selection of better cultivar. As the view, changing tendency of fresh color by apple cultivars and relationship between the tendency and PPO activity will be discussed in the seminar. In addition to the topic, research result on quality enhancement of fresh apple slices by heat shock treatment will be introduced.

  • PDF