• Title/Summary/Keyword: Ice-quenching

Search Result 10, Processing Time 0.028 seconds

Effect of Ice-Quenching After Degassing on the Hardness Change During Simulated Porcelain Firing in a Metal-Ceramic Pd-Au-Ag Alloy (Pd-Au-Ag계 금속-도재용 합금의 탈가스 처리 후 급냉 처리가 모의소성과정에서 경도변화에 미치는 영향)

  • Kim, Sung-Min;Shin, Hye-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.43 no.4
    • /
    • pp.317-322
    • /
    • 2016
  • The effect of ice-quenching after degassing on the hardness change during simulated porcelain firing in a metal-ceramic Pd-Au-Ag alloy was investigated by means of hardness test, field emission scanning electron microscopic observations, and X-ray diffraction analysis. The hardness decreased by ice-quenching after degassing, which was induced by the homogenization of the ice-quenched specimen. The decreased hardness by ice-quenching after degassing was recovered from the 1st opaque stage which was the first stage of the remaining firing process for bonding porcelain. The microstructural change showed that the increase in hardness during the remaining firing process was caused by precipitation. The ice-quenching after degassing did not affect the hardness change during the subsequent porcelain firing process.

The hardening effect by ice-quenching after oxidation of a Pd-Ag-Sn-Au metal-ceramic alloy during porcelain firing simulation (금속-세라믹용 Pd-Ag-Sn-Au계 합금의 모의소성 시 산화처리 후 급랭에 의한 경화 효과)

  • Shin, Hye-Jeong;Kim, Min-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.197-206
    • /
    • 2017
  • The hardening effect by ice-quenching after oxidation of a Pd-Ag-Sn-Au metal-ceramic alloy during porcelain firing simulation was investigated by means of hardness test, field emission scanning electron microscopic observations, and X-ray diffraction analysis. The hardness decreased by ice-quenching after oxidation, which was induced by the homogenization of the ice-quenched specimen. The decreased hardness by ice-quenching after oxidation was recovered from the wash stage which was the first stage of the remaining firing process for bonding porcelain. After wash stage, the hardness of the ice-quenched specimens decreased during the subsequent porcelain firing process. But the final hardness of the ice-quenched specimens after oxidation was higher than that of the specimens cooled at stage 0 after oxidation. The increase in hardness of the specimens during the first firing process was caused by the lattice strains generated at the interface between the face-centered cubic Pd-Ag-rich matrix and the face-centered tetragonal Pd3(Sn, Ga, In) precipitate. The decrease in hardness of the specimens during the remaining firing process was caused by the microstructural coarsening.

A study on the Dynamic Mechanical and Dielectric Loss according to Quenched Condition in Low Density Polyethylene fer Power Cable (전력 케이블용 저밀도 폴리에틸렌의 냉각 조건에 따른 기계적 및 유전손실에 관한 연구)

  • 김재환;권병휘;박재준
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.5
    • /
    • pp.27-37
    • /
    • 1992
  • We studied the dielectric and dynamic mechanical losses according to the quenching condition in low density polyethylene being used to power cables. According to severe quenching condition, characteristics of the temperature in internal friction los peak have decreased the magnitude of loss peak as amorphous region lengthen. From now on, the frequency dependent characteristics of dielectric loss have investigated at room temperature, and the dielectric loss peak due to interface polarization, between crystal and amorphous region, occurs about 30[Hz], and that, the peak due to orientation polarization in correspondence to the loss peak in internal friction has observed at about 3 [MHz]. As quenching velocity increased, the effect on quenching condition about the dielectric loss has decreased the magnitude of the loss peak. Thus, estimation has been carried out on the activation energies nd the degree of crystallinity by means of X-ray diffraction are obtained as follows: room quenching : 26.4 [kal/mole] and 54.73 [%], ice quenching : 25.6 [kcal/mole] and 48.47 [%], liquid nitrogen quenching specimens : 22.56 [kcal/mole] and 40.95 [%].

  • PDF

The crystallinity and electrical characteristics of low density polyetylene thin film (저밀도 폴리에틸렌 필림의 결정화도 및 전기적 특성)

  • 윤중락;권정열;이헌용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.164-168
    • /
    • 1996
  • The relation between crystallinity and thermal history in low density polyethylene thin films and their effect on electric conduction phenomena and dielectric breakdown was studied. The low density polythylene thin films obtained by the solution growth method heat-treated at 140[$^{\circ}C$] for 2 h and subsequently cooling to various ways. The degree of crystallinity was estimated by the X-ray diffraction measurement for the specimen of slowly cooling, ICE quenching and liquid nitrogen quenching. The result shows that the crystallinity decreases become faster as the cooling speed increased, and that conduction phenomenon is governed by the space charge limited current in high field. It was found that the dielectric breakdown field increases with an increase in cooling speed and test number in self-healing breakdown method.

  • PDF

Temperature Prediction of Al6061 Tube in Cryogenic Heat Treatment by CFD Analysis and Experimental Verification (CFD 해석을 이용한 Al6061 튜브의 극저온 열처리 시 소재의 온도 예측 및 실험적 검증)

  • Hwang, Seong-Jun;Ko, Dae-Hoon;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1210-1216
    • /
    • 2011
  • The purpose of this study is to establish the analysis method for prediction of temperature during cryogenic heat treatment. Experimental cryogenic heat treatment is conducted to observe the phenomena such as boiling of fluid, ice layer on the material surface and to measure the temperature distribution of Al6061 tube. The CFD analysis considering the observed phenomena in the experiment is performed to predict the temperature distribution and convection heat transfer coefficient at each stage of cryogenic heat treatment, in which the boiling of fluid is considered as the multi-phase condition of vapour and liquid. The formation of ice layer on the tube surface is also modeled between material and fluid. The predicted results are in good agreement with the experimental ones. From the results, it is shown that the analysis method can predict the temperature distribution and convection heat transfer coefficient during cryogenic heat treatment.

Mechanical Properties and Shape Memory Characteristics of NiAl Alloys by Powder Metallurgy (분말야금법으로 제작한 NiAl합금의 기계적성질 및 형상기억특성)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.231-238
    • /
    • 2020
  • The composition of martensite transformation in NiAl alloy is determined using pure nickel and aluminum powder by vacuum hot press powder metallurgy, which is a composition of martensitic transformation, and the characteristics of martensitic transformation and microstructure of sintered NiAl alloys are investigated. The produced sintered alloys are presintered and hot pressed in vacuum; after homogenizing heat treatment at 1,273 K for 86.4 ks, they are water-cooled to produce NiAl sintered alloys having relative density of 99 % or more. As a result of observations of the microstructure of the sintered NiAl alloy specimens quenched in ice water after homogenization treatment at 1,273 K, it is found that specimens of all compositions consisted of two phases and voids. In addition, it is found that martensite transformation did not occur because surface fluctuation shapes did not appear inside the crystal grains with quenching at 1,273 K. As a result of examining the relationship between the density and composition after martensitic transformation of the sintered alloys, the density after transformation is found to have increased by about 1 % compared to before the transformation. As a result of examining the relationship between the hardness (Hv) at room temperature and the composition of the matrix phase and the martensite phase, the hardness of the martensite phase is found to be smaller than that of the matrix phase. As a result of examining the relationship between the temperature at which the shape recovery is completed by heating and the composition, the shape recovery temperature is found to decrease almost linearly as the Al concentration increases, and the gradient is about -160 K/at% Al. After quenching the sintered NiAl alloys of the 37 at%Al into martensite, specimens fractured by three-point bending at room temperature are observed by SEM and, as a result, some grain boundary fractures are observed on the fracture surface, and mainly intergranular cleavage fractures.

Effect of Cooling Rate and Annealing Temperature on Corrosion and Microstructure of Zircaloy-4 and Zr-2.5Nb Alloy (Zircaloy-4와 Zr-2.5Nb 합금의 부식과 미세조직에 미치는 냉각속도와 소둔온도의 영향)

  • Jeong, Yong-Hwan;Jeong, Yeon-Ho;Kim, Hyeon-Gil;Wee, Myung-Yong
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1031-1037
    • /
    • 1998
  • To investigate the effect of cooling rate and annealing temperature on the corrosion of Zircaloy-4 and Zr-2. 5Nb alloys, autoclave corrosion tests were performed at $500^{\circ}C$ for the specimens prepared by various heat treatments. The specimens were heat-treated at $1050^{\circ}C$ for 30 minutes and cooled by ice-brine quenching, water quenching, oil quenching, air cooling, and furnace cooling. To investigate the effect of annealing temperature, the specimens were annealed at $\alpha$, ($\alpha$+$\beta$)-, and $\beta$-temperatures. It was observed from the $500^{\circ}C$ corrosion test that nodular corrosion occurred on the Zircaloy-4 alloy but did not occur on the Zr-2.5Nb alloy. The corrosion resistance of Zircaloy-4 increased with increasing the cooling rate. On the other hand, the corrosion resistance of Zr-2.5Nb decreased with increasing the cooling rate and the annealing temperature. It is suggested that corrosion resistance of Zircaloy-4 would be controlled by the distribution of Fe and Cr element in the matrix and precipitates, while that of Zr-2.5Nb alloy the niobium concentration and $\beta_{-Nb}$ phase.

  • PDF

A study on microstructure, corrosion characteries and hardness of pure Ti according to cooling methods (생체용 순수 Ti 주조체의 냉각방법에 따른 주조조직과 부식특성 및 경도에 관한 연구)

  • Kim, Jae-Doo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.65-73
    • /
    • 2001
  • The purpose of this study was to investigate the microstucture and hardness, corrosion of pure Ti alloy, which is widely used as partial denture frame work these days, depending on the cooling method, followed by casting. The first group was bench cooling at room temperature($18^{\circ}C$), the second group was slowly cooled in the furnace from $700^{\circ}C$ to room temperature, and third. rapidly cooled in $0^{\circ}C$ water. The microstructure of each specimen observed by means of photomicrograph taken by electron microscope, in add to the physical characteristics of each specimen were obtained using the rockwell Hardnest Number. the characteristics of corrosion. The results were obtained as follows: 1. From Potentiodynamic plot. we conclude furnace-cooled specimen had the best stabiltity of passive film and that air-cooled specimen showed similar characteristics. The density of electric current of quenched specimen was the highest, which formed kind of unstable passive film. 2. Specimen cooled at room temperature (air cooling) had the highest value of hardness of 81.26HRB, specimen cooled at ice-water, $0^{\circ}C$, had the value of 78.42HRB, and specimen furnace-cooled at $700^{\circ}C$ had lowest value of 77.1HRB. 3. Quenching treated micro-structure formed martensite structure by and large. In case of air cooling, we could see $\alpha$-structure widmanstatten formed overall. In furnace cooling, widmanstatten structure and various shape $\alpha$-structures forming colony with direction were detected.

  • PDF

Electrochemical Characteristics of Nanotubular Ti-25Nb-xZr Ternary Alloys for Dental Implant Materials

  • Byeon, In-Seop;Park, Seon-Young;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.10 no.1
    • /
    • pp.10-21
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the electrochemical characteristics of nanotubular Ti-25Nb-xZr ternary alloys for dental implant materials. Materials and Methods: Ti-25Nb-xZr alloys with different Zr contents (0, 3, 7, and 15 wt.%) were manufactured using commercially pure titanium (CP-Ti), niobium (Nb), and zirconium (Zr) (99.95 wt.% purity). The alloys were prepared by arc melting in argon (Ar) atmosphere. The Ti-25Nb-xZr alloys were homogenized in Ar atmosphere at $1,000^{\circ}C$ for 12 hours followed by quenching into ice water. The microstructure of the Ti-25Nb-xZr alloys was examined by a field emission scanning electron microscope. The phases in the alloys were identified by an X-ray diffractometer. The chemical composition of the nanotube-formed surfaces was determined by energy-dispersive X-ray spectroscopy. Self-organized $TiO_2$ was prepared by electrochemical oxidation of the samples in a $1.0M\;H_3PO_4+0.8wt.%$ NaF electrolyte. The anodization potential was 30 V and time was 1 hour by DC supplier. Surface wettability was evaluated for both the metallographically polished and nanotube-formed surfaces using a contact-angle goniometer. The corrosion properties of the specimens were investigated using a 0.9 wt.% aqueous solution of NaCl at $36^{\circ}C{\pm}5^{\circ}C$ using a potentiodynamic polarization test. Result: Needle-like structure of Ti-25Nb-xZr alloys was transform to equiaxed structure as Zr content increased. Nanotube formed on Ti-25Nb-xZr alloys show two sizes of nanotube structure. The diameters of the large tubes decreased and small tubes increased as Zr content increased. The lower contact angles for nanotube formed Ti-25NbxZr alloys surfaces showed compare to non-nanotube formed surface. The corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface showed longer the passive regions compared to non-treatment surface. Conclusion: It is confirmed that corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface has longer passive region compared to without treatment surface.