• Title/Summary/Keyword: Ice load

Search Result 148, Processing Time 0.027 seconds

Collision Test between Ice Floe and Ship Transiting the Pack Ice

  • Kim, Hyo-Il;Sawamura, Junji;Jun, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.37-39
    • /
    • 2015
  • The ships transiting the Northern Sea Route (NSR) have been gradually increased so that the number of ship-ice collision accidents would be increased. The collision between ship and ice floe can lead to serious damage of hulls and decline of ship's maneuverability. In this study, collision tests that a model ship is forced to collide with disk-shaped synthetic ice floes are conducted in a towing tank. The synthetic ice floes made of polypropylene which has similar density with real ice are used. The ice load is measured by a load cell installed on the carriage rod. The ice floe's motion is measured by a motion sensor installed on the synthetic ice floe. The influences of contact conditions such as hull form and ship speed on the ship-ice collision response are investigated and discussed by measured peak force and ice floe's motion.

  • PDF

Dynamic Responses of a Slender Offshore Structure Subject to Level Ice Load (平坦氷荷重을 받는 細長形 해양구조물의 動的 거동)

  • Choi, Kyung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.156-166
    • /
    • 1995
  • Regrading the development of offshore natural gas field near Sakhalin Island which is an ice-infested area, this study aims to estimate the dynamic ice load for construction of offshore structures operating in this region. In this paper the design ice load and dynamic responses of a slender Arctic structure upon continuous ice movement are sutdied. Crushing agter a certain elastic deformation is assumed as a primary failure mechanism at the contact zone between semi-infinite level ice edge and the face of structure. Dynamic interaction forces are calculated using a modified Korzhavin's equation and a two-dimensional ice-structure interaction model is adopted. To verify the numerical model, dynamic analysis is performed for on of the Baltic Sea channel markers whose response patterns were presiously observed.

  • PDF

A Study on Daily Cooling Load Forecast Using Fuzzy Logic (퍼지 논리를 이용한 일일 냉방부하 예측에 관한 연구)

  • 신관우;이윤섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.948-953
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system are possible solutions to settle this problem. In this study. the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested, then the method of forecasting the cooling load using fuzzy logic is suggested by simulating that the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated, and it is shown that the forecasted data approach to the actual data. Operating the ice-storage system by the forecast of cooling load with night electric power will improve the ice-storage system efficiency and reduce the peak electric power load during the summer season as a result.

Estimation of the Fatigue Damage for an Ice-going Vessel under Broken Ice Condition Part II - Simplified Approach (유빙 하중을 받는 내빙 선박의 피로손상도 추정 Part II - 간이 해석법)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.231-241
    • /
    • 2019
  • In this study, a simplified analysis method was developed to evaluate the fatigue damage of an ice-going ship under broken ice condition. The global ice load, which is essentially calculated at the design stage of the Arctic vessel, and the hull form information were used to estimate the local ice load acting on the outer-shell of the ship. The local ice load was applied to the finite element analysis model, and the Weibull parameters for the target fatigue point were derived. Finally, fatigue damage was evaluated by applying the S-N curve and the Palmgren-Miner rule. For the verification of the proposed method, numerical analyses using direct approach were performed for the same conditions. A numerical model that implements the interaction between ice and structure was introduced to verify the local ice load and the stress calculated from the proposed method. Finally, the fatigue analyses of the Baltic Sea for actual ice conditions were performed, and the results of the proposed method, the method using numerical analysis, and the LR method were compared.

An Analysis on Ice Load Signals Measured from Repetitive Ramming in Heavy Ice Condition (두꺼운 해빙에 대한 충격쇄빙 시 빙하중 신호 분석)

  • Ahn, Se-Jin;Lee, Tak-Kee;Choi, Kyungsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.306-312
    • /
    • 2018
  • To navigate in ice-covered waters, the ice-breaking process is required. The ice-breaking mode depends on material properties of sea ice and ice conditions. The ice-breaking mode is classified into ramming and continuous ice-breaking. The ramming is effective on large ice features, such as thick ice ridge and icebergs, and the continuous ice-breaking is on level ice. In general, the impact time duration of crushing or bending on ice sheets is from 0.2 to 1.0 second. However, impact duration in ramming will be increased. The Korean ice-breaking research vessel ARAON conducted her research voyage in the Antarctic sea during the winter of 2012. The IBRV ARAON measured strain in ramming and continuous ice-breaking. Strain gauge signals were recorded during the planned ice-breaking performance and the unplanned ice transits in heavy ice conditions. The aim of this study is to investigate the ice load signals measured in ramming processes under the heavy ice condition. Based on the time history of the signals, a raising time, a half-decaying time and time duration were investigated and compared with the previous study which was suggested the five profiles of the ice load signals.

Comparison of the 6-DOF Motion Sensor and Stain Gauge Data for Ice Load Estimation on IBRV ARAON (쇄빙연구선 ARAON호의 빙하중 추정을 위한 6자유도 운동계측 및 스트레인 게이지 데이터의 비교 분석)

  • Min, Jung Ki;Cheon, Eun-Jee;Kim, Jin Myung;Lee, Sang Chul;Choi, Kyungsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.529-535
    • /
    • 2016
  • This study focuses on the comparison of measured data from 6-DOF motion sensor and strain gauge installed in the IBRV ARAON during 2015 summer voyage in the Arctic. Procedures to calculate the global ice load from MotionPak II inertial measurement system and the local load from stain gauge system are discussed. The ship's speed and peak load are determined in the concept of an ice collision "event". It is found that the peak values in the global ice calculated form whole ship motion analysis fall in the range of 1.5~3 times of the local ice load based in strain gauge measurement.

Development of Ice Load Generation Module to Evaluate Station-Keeping Performance for Arctic Floating Structures in Time Domain

  • Kang, Hyun Hwa;Lee, Dae-Soo;Lim, Ji-Su;Lee, Seung Jae;Jang, Jinho;Jung, Kwang Hyo;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.394-405
    • /
    • 2020
  • To assess the station-keeping performance of floating structures in the Arctic region, the ice load should be considered along with other environmental loads induced by waves, wind, and currents. However, present methods for performance evaluation in the time domain are not effective in terms of time and cost. An ice load generation module is proposed based on the experimental data measured at the KRISO ice model basin. The developed module was applied to a time domain simulation. Using the results of a captive model test conducted in multiple directions, the statistical characteristics of ice loads were analyzed and processed so that an ice load corresponding to an arbitrary angle of the structure could be generated. The developed module is connected to commercial dynamic analysis software (OrcaFlex) as an external force input. Station-keeping simulation in the time domain was conducted for the same floating structure used in the model test. The mooring system was modeled and included to reflect the designed operation scenario. Simulation results show the effectiveness of the proposed ice generation module and its application to station-keeping performance evaluation. Considering the generated ice load, the designed structure can maintain a heading angle relative to ice up to 4°. Station-keeping performance is enhanced as the heading angle conforms to the drift direction. It is expected that the developed module will be used as a platform to verify station-keeping algorithms for Arctic floating structures with a dynamic positioning system.

Calculation of Fatigue Life of Bow Frame of ARAON Considering Navigating in Ice and Open Waters (빙 및 일반해역 운항을 고려한 아라온호 선수프레임의 피로수명 계산)

  • An, Woo-Seong;Lee, Tak-Kee;Hwang, Mi-Ran
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.458-465
    • /
    • 2018
  • Ice-going ships such as icebreakers, icebreaking tankers, and icebreaking LNG carriers are subjected to wave loads in open water and ice loads in ice-covered water. In terms of the ship's structural design, the local ice load is important. The fatigue failure due to repeated ice loads is also important. ISO 19906 specifies the assessment of the fatigue limit for a polar offshore structures. In addition, Lloyd's Register refers to fatigue damage based on ShipRight FDA ICE. In ShipRight FDA ICE, the fatigue damage indices due to wave and ice loads are simply presented as 0.5 for each load. It also states that the sum of the two fatigue damage indices should not exceed one. This study calculated and analyzed the fatigue damage index and fatigue life considering ARAON's voyage schedules and the assumed Antarctic voyage based on data measured during the Arctic voyage of ARAON in 2010.

Study of Specific energy of mechanical destruction of ice for calculation of ice load on ships and offshore structures

  • Tsuprik, V.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.718-728
    • /
    • 2013
  • Analysis of scenarios of transportation oil and gas which produced in the Arctic and others cold seas shows that in the near-term there will be a significant increase of tonnage of tankers for oil and gas and number of ships which should be exploited in difficult ice conditions. For the construction of ice-resistant structures (IRS) intended for production of oil and gas and transportation of these products at ice-class vessels, calculating the load from ice to board the ship and on surface of supports of the platforms are the actuality and urgent tasks. These tasks have one basis in both cases: at beginning of the contact occurs fracture of edge of ice, then occurs compressing of rubble shattered of ice, then they extruding from contact area, after this next layer of ice begin to destruct. At calculating the strength of plating and elements construct of vessels, icebreakers and ice-resistant platforms the specific energy of mechanical destruction ice ${\epsilon}_{cr}$ is an important parameter. For the whole period of study of physical and mechanical characteristics of sea ice have been not many experimental studies various researchers to obtain numerical values of this energetic characteristic of the strength of ice by a method called Ball Drop Test. This study shows that the destruction of the ice from dynamic loading in zone of contact occurs in several cycles, and the ice destructed with a minimum numerical values of ${\epsilon}_{cr}$. The author offer this energy characteristic to take as a base value for the calculation of ice load on ships and offshore structures.

An Estimation of Cooling Load for Control of Ice Storage System (빙축열 시스템의 제어를 위한 냉방부하 예측)

  • Yoo, Seong-Yeon;Han, Seung-Ho;No, Kwan-Jong;Lee, Je-Myo;Kang, Tae-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.205-210
    • /
    • 2005
  • Ice storage system stores cold energy using ice, which is used for cooling on next day. Ice storage system is the effective cooling system that uses cheep electric energy during a night, and also suppresses the peak load of electricity. In this study, the normalized temperature, relative humidity and specific humidity are analyzed using the weather data for past five years in order to estimate the cooling load for the control of ice storage system. The calculated cooling loads show fairly good agreement with the measured data of model hospital, especially at the outdoor design temperature of $25^{\circ}C$.

  • PDF