• Title/Summary/Keyword: Ice induced abrasion

Search Result 2, Processing Time 0.016 seconds

Basic Experimental Study for Ice-Concrete Friction Behavior (빙-콘크리트 마찰 특성 평가를 위한 실험적 기초 연구)

  • Do, Youngjun;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.365-372
    • /
    • 2020
  • Ice induced abrasion is known as a critical problem in concrete gravity based offshore structures, which are mainly used in the arctic regions. Although many researches on ice abrasion have been conducted for the last several decades, there still are some difficulties in designing concrete gravity based offshore structures against abrasion problem because there is no standardized method yet due to the uncertain physics involved in. This paper presents an experimental study for the evaluation of concrete abrasion characteristics due to ice friction on concrete surface. For the test, a testing machine capable of abrasion and friction was designed and produced, and standardized procedure was proposed to produce ice specimen used for abrasion test. For the experiment, compressive strength of the ice specimen were explored through a static compression test. Then the friction test between ice specimen and concrete surface was performed and friction coefficients were derived using measured vertical and horizontal forces. Dependency of friction coefficients on some test parameters were studied and discussed as well.

Numerical simulation of concrete abrasion induced by unbreakable ice floes

  • Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-69
    • /
    • 2019
  • This paper focuses on the numerical simulation of ice abrasion induced by unbreakable ice floe. Under the assumption that unbreakable floes behave as rigid body, the Discrete Element Method (DEM) was applied to simulate the interaction between a fixed structure and ice floes. DEM is a numerical technique which is eligible for computing the motion and effect of a large number of particles. In DEM simulation, individual ice floe was treated as single rigid element which interacts with each other following the given interaction rules. Interactions between the ice floes and structure were defined by soft contact and viscous Coulomb friction laws. To derive the details of the interactions in terms of interaction parameters, the Finite Element Method (FEM) was employed. An abrasion process between a structure and an ice floe was simulated by FEM, and the parameters in DEM such as contact stiffness, contact damping coefficient, etc. were calibrated based on the FEM result. Resultantly, contact length and contact path length, which are the most important factors in ice abrasion prediction, were calculated from both DEM and FEM and compared with each other. The results showed good correspondence between the two results, providing superior numerical efficiency of DEM.