• 제목/요약/키워드: Ice breaking ships

검색결과 13건 처리시간 0.022초

A prediction method of ice breaking resistance using a multiple regression analysis

  • Cho, Seong-Rak;Lee, Sungsu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.708-719
    • /
    • 2015
  • The two most important tasks of icebreakers are first to secure a sailing route by breaking the thick sea ice and second to sail efficiently herself for purposes of exploration and transportation in the polar seas. The resistance of icebreakers is a priority factor at the preliminary design stage; not only must their sailing efficiency be satisfied, but the design of the propulsion system will be directly affected. Therefore, the performance of icebreakers must be accurately calculated and evaluated through the use of model tests in an ice tank before construction starts. In this paper, a new procedure is developed, based on model tests, to estimate a ship's ice breaking resistance during continuous ice-breaking in ice. Some of the factors associated with crushing failures are systematically considered in order to correctly estimate her ice-breaking resistance. This study is intended to contribute to the improvement of the techniques for ice resistance prediction with ice breaking ships.

빙 해역 운항선박의 빙 유기 피로문제에 대한 기초연구 (A Preliminary Study on the Ice-induced Fatigue in Ice-going Ships)

  • 황미란;권용현;이탁기
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.303-309
    • /
    • 2016
  • As commercialization of the Arctic sea route and resource developments are regularized, demands for ice-breaking tankers, LNG carriers, and offshore plants are expected to increase. In addition, the existing ice-breaking cargo ships navigating in the ice-covered waters are worn out. Hence, the construction of new ships is likely to be undertaken for both current and long-term applications. The design of ships navigating in ice-covered waters demands conservative methods and strict development standards owing to the extreme cold and collision tendencies with ice floes and/or icebergs. ISO 19906 recently stated that a fatigue limit should be defined when designing Arctic offshore structures such that the ice-induced fatigue becomes one of the important design drivers. Thus, establishing systematic measures to mitigate ice-induced fatigue problems in ice-breaking ships are important from the viewpoint of having a competitive advantage. In this paper, the issues relating to ice-induced fatigue problems, based on data and published literature, are examined to describe the criticality of ice-induced fatigue. Potential fatigue damage possibilities are investigated using data measured in the Arctic Ocean (2013) and using the Korean icebreaker, ARAON.

빙마찰계수에 따른 쇄빙탱커의 빙저항 변화 (Change of Ice Resistance of Ice-Breaking Tanker According to Frictional Coefficient)

  • 조성락;이승수;이용철;염종길;장진호
    • 대한조선학회논문집
    • /
    • 제58권3호
    • /
    • pp.175-181
    • /
    • 2021
  • This study describes the model tests in ice according to the frictional coefficient of an ice-breaking ship and the change in ice resistance by the analysis method for each component of ice resistances. The target vessel is a 90K DWT ice-breaking tanker capable of operating in ARC7 ice conditions in the Arctic Ocean, and twin POD propellers are fitted. The hull was specially painted with four different frictional coefficients on the same ship model. The total ice resistance can be separated by ice breaking, ice buoyancy, ice clearing resistances through the tests in level ice, pre-sawn ice and creep test in pre-sawn ice under sea ice thickness of 1.2 m and 1.7 m. Ice resistance was analyzed by correcting the thickness and bending strength of model ice by the ITTC correction method. As the frictional coefficient between the hull and ice increases, ice buoyancy and clearing resistances increase significantly. When the surface of the hull is rough, it is considered that the broken ice pieces do not slip easily to the side, resulting in an increase in ice buoyancy resistance. Also, the frictional coefficient was found to have a great influence on the ice clearing resistance as the ice thickness became thicker.

Prediction of ship resistance in level ice based on empirical approach

  • Jeong, Seong-Yeob;Choi, Kyungsik;Kang, Kuk-Jin;Ha, Jung-Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.613-623
    • /
    • 2017
  • A semi-empirical model to predict ship resistance in level ice based on Lindqvist's model is presented. This model assumes that contact between the ship and the ice is a case of symmetrical collision, and two contact cases are considered. Submersion force is calculated via Lindqvist's formula, and the crushing and breaking forces are determined by a concept of energy consideration during ship and ice impact. The effect of the contact coefficient is analyzed in the ice resistance prediction. To validate this model, the predicted results are compared with model test data of USCGC Healy and icebreaker Araon, and full-scale data of the icebreaker KV Svalbard. A relatively good agreement is achieved. As a result, the presented model is recommended for preliminary total resistance prediction in advance of the evaluation of the icebreaking performance of vessels.

쐐기형 모형선 주위 연속 쇄빙과정에 관한 입자 기반 수치 시뮬레이션 (Particle-based Numerical Simulation of Continuous Ice Breaking Process around Wedge-type Model Ship)

  • ;신우진;김동현;박종천;정성엽
    • 대한조선학회논문집
    • /
    • 제57권1호
    • /
    • pp.23-34
    • /
    • 2020
  • This paper covers the development of prediction techniques for ice load on ice-breakers operating in continuous ice-breaking under level ice conditions using particle-based continuum mechanics. Ice is assumed to be a linear elastic material until the fracture occurs. The maximum normal stress theory is used for the criterion of fracture. The location of the crack can be expressed using a local scalar function consisting of the gradient of the first principal stress and the corresponding eigen-vector. This expression is used to determine the relative position of particle pair to the new crack. The Hertz contact model is introduced to consider the collisions between ice fragments and the collisions between hull and ice fragments. In order to verify the developed technique, the simulation results for the three-point bending problems of ice-specimen and the continuous ice-breaking problem around a wedge-type model ship with bow angle of 20° are compared with the experimental results carrying out at Korea Research Institute of Ships and Ocean Engineering (KRISO).

A numerical study on ice failure process and ice-ship interactions by Smoothed Particle Hydrodynamics

  • Zhang, Ningbo;Zheng, Xing;Ma, Qingwei;Hu, Zhenhong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.796-808
    • /
    • 2019
  • In this paper, a Smoothed Particle Hydrodynamics (SPH) method is extended to simulate the ice failure process and ice-ship interactions. The softening elastoplastic model integrating Drucker-Prager yield criterion is embedded into the SPH method to simulate the failure progress of ice. To verify the accuracy of the proposed SPH method, two benchmarks are presented, which include the elastic vibration of a cantilever beam and three-point bending failure of the ice beam. The good agreement between the obtained numerical results and experimental data indicates that the presented SPH method can give the reliable and accurate results for simulating the ice failure progress. On this basis, the extended SPH method is employed to simulate level ice interacting with sloping structure and three-dimensional ice-ship interaction in level ice, and the numerical data is validated through comparing with experimental results of a 1:20 scaled Araon icebreaker model. It is shown the proposed SPH model can satisfactorily predict the ice breaking process and ice breaking resistance on ships in ice-ship interaction.

빙해수조 모형빙판의 두께 계측과 유효탄성계수용 특성길이 연구 (Thickness Measure and Characteristic Length for Effective Young's Modulus of Model Ice Plate in the Ice Basin)

  • 이재환;최봉균;이춘주
    • 한국전산구조공학회논문집
    • /
    • 제27권5호
    • /
    • pp.353-360
    • /
    • 2014
  • 본 논문에서는 국내 선박해양플랜트연구소에 구축된 빙해수조의 빙특성 중에서 모형빙의 두께와 유효탄성계수 산출과정이 소개되었다. 수조에서 결빙되는 빙판은 크기가 가로 세로각각 30 m 정도에 두께는 40mm정도이다. 모형선의 실험결과를 쇄빙선 설계에 사용하기 위하여 빙 특성 정보가 필요하다. 사람이 빙판을 일부 절개하고 일일이 손으로 두께를 측정하는 것을 지양하기 위하여 초음파 기기를 사용하였는데 저주파 장비를 사용하여 작은 샘플 모형빙에 대한 두께는 계측되었다. 하지만 완벽한 계측을 위해서는 송수신 일체형 저주파 센서나 정확한 위치가 설정된 분리형 센서 혹은 고가의 특수 장치가 필요함을 확인하게 되었다. 한편 빙판의 처짐량을 간이식 LVDT로 계측하고 이를 탄성체 위에 놓인 무한 판의 특성길이 관계식에 대입하여 빙의 유효탄성계수를 산출하였는데 외국의 결과와 유사함이 입증되었다.

극지해역 운용 해양작업지원선(PSV)의 선형설계와 빙 저항추진 성능 연구 (A Study on the Hull Form Design and Ice Resistance & Propulsion Performance of a Platform Support Vessel (PSV) Operated in the Arctic Ocean)

  • 염종길;강국진;장진호;정성엽
    • 대한조선학회논문집
    • /
    • 제55권6호
    • /
    • pp.497-504
    • /
    • 2018
  • Platform Support Vessels operated in the Arctic Ocean support diverse operations of offshore plant in the sea, and the PSV is also needed to support works to exploit the oil and gas in the Arctic Ocean. Both of the ice breaking and the open sea performance have been considered together to secure the enhanced operational performance at the harsh environment in the Arctic Ocean and the open sea as well. In this study, One of the design requirements of a PSV is to guarantee continuous icebreaking performance with 3 knots at 1 m thickness of level ice, where the design draft is 7.5m and the engine power is 13 MW. Three hull forms were designed, and the ice resistance based on empirical formulas was estimated to select the initial hull form having an outstanding performance. The full scale performance of the designed hull forms was predicted by the ice model test conducted in the ice model basin of Korea Research Institute of Ships & Ocean Engineering(KRISO). The analysed results show that the selected hull form satisfies the above design requirement.

Time domain simulation for icebreaking and turning capability of bow-first icebreaking models in level ice

  • Ko, Donghyeong;Park, Kyung-Duk;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권3호
    • /
    • pp.228-234
    • /
    • 2016
  • Recent icebreaking ships need to be designed to enhance not only icebreaking capability but also turning ability. For the evaluation of ice resistance induced by an icebreaking hull form, HHI (Hyundai Heavy Industries) has developed the hybrid empirical formulas (Park et al., 2015) by considering the geometrical hull shape features, such as waterline and underwater sections. However, the empirical formulas have inherent limits to the precise estimation of the icebreaking and turning ability because the breaking process and the resulting pattern are ignored. For this reason, numerical calculation in time domain is performed to predict the icebreaking process and pattern. In the simulation, varying crushing stress according to velocity vectors and contact areas between hull and ice is newly introduced. Moreover, the simulation results were verified by comparing them with the model test results for three different bow-first icebreaking models.

선박조종시뮬레이션을 이용한 북극해 안전 호송에 관한 연구 (A study on the northern sea route safety convoy using ship handling simulation)

  • 김원욱;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권9호
    • /
    • pp.847-851
    • /
    • 2016
  • 지구 온난화 현상으로 2030년 정도에는 북극해 항로 이용이 연중 가능할 것으로 예상되고 있어 향후에 교통량이 증가할 것으로 판단된다. 하지만 현재는 쇄빙선 선장의 지시에 따라 운항하고 있어 안전 호송 속력 및 간격은 정량화되지 못하고 있다. 본 연구에서는 기존 연구인 최소 안전이격거리 및 최단 정지거리에 대하여 선박조종시뮬레이션 수행을 통해 검증하고 다음과 같은 결과를 얻었다. 정지거리 감소에 있어서 lead 간격이 선폭의 2~4배인 경우에 선속이 7 [kts] 이하인 경우 crash astern과 crash astern & hard rudder인 경우에서 유의적인 차이는 없었으나 선속이 10 [kts]인 경우는 3.5L에서 2.5L로 정지거리가 감소함이 확인되었다. 총 10척의 대상선박에 대하여 crash astern을 사용하여 최단 정지거리를 구한 결과 5 [kts]일 경우는 0.98L~1.8L, 8 [kts]에서는 1.9L~4.0L로 나타났다. 좁은 수로에서의 최소 안전이격거리는 6L이지만 북극해 항로는 전방만 해당하므로 3L이 필요하다. 이 결과를 적용하면 북극해 안전호송 속력은 5 [kt]이하이며, 8 [kts]이상으로 호송 시에는 crash astern & hard rudder를 이용하여 호송거리를 약 3.4L 이상은 유지하여야 한다.