• Title/Summary/Keyword: Ice Layer

Search Result 133, Processing Time 0.031 seconds

Analysis of Temperature on Overhead Contact Line Using De-icing System (전차선 해빙시스템의 온도 상승효과)

  • Park Young;Kwon Samyoung;Jung Hosung;Cho Younghyun;Park Hyunjune;Lee Kiwon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.724-729
    • /
    • 2005
  • Winter weather condition can cause icing and ice coats on 25 kV overhead contact wire. This generates shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire and extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing operations should he performed just before train operation to avoid the formation of another ice layer. Thus, the work in this paper is investigation and analysis of de-icing system which could be applied to the electric car line of railways.

  • PDF

A Study on the Temperature Feature of Electric Car Line by the Climatic Change for the De-icing System (해빙시스템을 위한 기후변화에 따른 전차선 온도특성에 관한 연구)

  • Jung, Myung-Sub;Kim, Yong;Lee, Byung-Song;Kwon, Sam-Young;Jung, Ho-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.305-307
    • /
    • 2005
  • In the cold and temperate regions of Korea the icing and ice coats on 25[kV] electric car line during winter is a very serious problem. This generates shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire and extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing operations should be performed just before train operation to avoid the formation of another ice layer. This paper presents temperature analysis of the de-icing system which could be applied to the electric car line of railways.

  • PDF

Changes Detection of Ice Dimension in Cheonji, Baekdu Mountain Using Sentinel-1 Image Classification (Sentinel-1 위성의 영상 분류 기법을 이용한 백두산 천지의 얼음 면적 변화 탐지)

  • Park, Sungjae;Eom, Jinah;Ko, Bokyun;Park, Jeong-Won;Lee, Chang-Wook
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2020
  • Cheonji, the largest caldera lake in Asia, is located at the summit of Baekdu Mountain. Cheonji is covered with snow and ice for about six months of the year due to its high altitude and its surrounding environment. Since most of the sources of water are from groundwater, the water temperature is closely related to the volcanic activity. However, in the 2000s, many volcanic activities have been monitored on the mountain. In this study, we analyzed the dimension of ice produced during winter in Baekdu Mountain using Sentinel-1 satellite image data provided by the European Space Agency (ESA). In order to calculate the dimension of ice from the backscatter image of the Sentinel-1 satellite, 20 Gray-Level Co-occurrence Matrix (GLCM) layers were generated from two polarization images using texture analysis. The method used in calculating the area was utilized with the Support Vector Machine (SVM) algorithm to classify the GLCM layer which is to calculate the dimension of ice in the image. Also, the calculated area was correlated with temperature data obtained from Samjiyeon weather station. This study could be used as a basis for suggesting an alternative to the new method of calculating the area of ice before using a long-term time series analysis on a full scale.

Prediction models of the shear modulus of normal or frozen soil-rock mixtures

  • Zhou, Zhong;Yang, Hao;Xing, Kai;Gao, Wenyuan
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.783-791
    • /
    • 2018
  • In consideration of the mesoscopic structure of soil-rock mixtures in which the rock aggregates are wrapped by soil at normal temperatures, a two-layer embedded model of single-inclusion composite material was built to calculate the shear modulus of soil-rock mixtures. At a freezing temperature, an interface ice interlayer was placed between the soil and rock interface in the mesoscopic structure of the soil-rock mixtures. Considering that, a three-layer embedded model of double-inclusion composite materials and a multi-step multiphase micromechanics model were then built to calculate the shear modulus of the frozen soil-rock mixtures. Given the effect of pore structure of soil-rock mixtures at normal temperatures, its shear modulus was also calculated by using of the three-layer embedded model. Experimental comparison showed that compared with the two-layer embedded model, the effect predicted by the three-layer embedded model of the soil-rock mixtures was better. The shear modulus of the soil-rock mixtures gradually increased with the increase in rock regardless of temperature, and the increment rate of the shear modulus increased rapidly particularly when the rock content ranged from 50% to 70%. The shear modulus of the frozen soil-rock mixtures was nearly 3.7 times higher than that of the soil-rock mixtures at a normal temperature.

Radiative Transfer Simulation of Microwave Brightness Temperature from Rain Rate

  • Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 2002
  • Theoretical models of radiative transfer are developed to simulate the 85 GHz brightness temperature (T85) observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer as a function of rain rate. These simulations are performed separately over regions of the convective and stratiform rain. TRMM Precipitation Radar (PR) observations are utilized to construct vertical profiles of hydrometeors in the regions. For a given rain rate, the extinction in 85 GHz due to hydrometeors above the freezing level is found to be relatively weak in the convective regions compared to that in the stratiform. The hydrometeor profile above the freezing level responsible for the weak extinction in convective regions is inferred from theoretical considerations to contain two layers: 1) a mixed (or mixed-phase) layer of 2 km thickness with mixed-phase particles, liquid drops and graupel above the freezing level, and 2) a layer of graupel extending from the top of the mixed layer to the cloud top. Strong extinction in the stratiform regions is inferred to result from slowly-falling, low-density ice aggregates (snow) above the freezing level. These theoretical results are consistent with the T85 measured by TMI, and with the rain rate deduced from PR for the convective and stratiform rain regions. On the basis of this study, the accuracy of the rain rate sensed by TMI is inferred to depend critically on the specification of the convective or stratiform nature of the rain.

Ground Penetrating Radar Imaging of a Circular Patterned Ground near King Sejong Station, Antarctica

  • Kim, Kwansoo;Ju, Hyeontae;Lee, Joohan;Chung, Changhyun;Kim, Hyoungkwon;Lee, Sunjoong;Kim, Jisoo
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.257-267
    • /
    • 2021
  • Constraints on the structure and composition of the active layer are important for understanding permafrost evolution. Soil convection owing to repeated moisture-induced freeze-thaw cycles within the active layer promotes the formation of self-organized patterned ground. Here we present the results of ground penetrating radar (GPR) surveys across a selected sorted circle near King Sejong Station, Antarctica, to better delineate the active layer and its relation to the observed patterned ground structure. We acquire GPR data in both bistatic mode (common mid-points) for precise velocity constraints and monostatic mode (common-offset) for subsurface imaging. Reflections are derived from the active layer-permafrost boundary, organic layer-weathered soil boundary within the active layer, and frozen rock-fracture-filled ice boundary within the permafrost. The base of the imaged sorted circle possesses a convex-down shape in the central silty zone, which is typical for the pattern associated with convection-like soil motion within the active layer. The boundary between the central fine-silty domain and coarse-grained stone border is effectively identified in a radar amplitude contour at the assumed active layer depth, and is further examined in the frequency spectra of the near- and far-offset traces. The far-offset traces and the traces from the lower frequency components dominant on the far-offset traces would be associated with rapid absorption of higher frequency radiowave due to the voids in gravel-rich zone. The presented correlation strategies for analyzing very shallow, thin-layered GPR reflection data can potentially be applied to the various types of patterned ground, particularly for acquiring time-lapse imaging, when electric resistivity tomography is incorporated into the analysis.

A study on sea-water freezing behavior for ice maker for fishing boat (선박용 제빙장치의 개발을 위한 해수동결거동에 관한 연구)

  • Choi, Young-Gyu;Kim, Jung-Sik;Kim, Kyung-Kun;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.233-238
    • /
    • 2005
  • According to change of flow around a circular tube for freezing, measured a variety of salinity of frozen layer. This study was experimentally performed to investigate freezing behavior of sea water along a vertical cooled a circular tube with bubbly flow. The experiments were carried out for a variety of parameter, such as air-bubble method, cooled -tube temperature and air-flow rate. It was found that the experimental parameters gave a great influence on the freezing rate and the salinity of the frozen layer.

  • PDF

Acidic Water Monolayer on Ru(0001)

  • Kim, Youngsoon;Moon, Eui-Seong;Shin, Sunghwan;Yi, Seung-Hoon;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.268-268
    • /
    • 2013
  • Water molecules on a Ru(0001) surface are anomalously acidic compared to bulk water. The observation was made by conducting reactive ion scattering, reflection absorption infrared spectroscopy, and temperature-programmed desorption measurements for the adsorption of ammonia onto a water layer formed on Ru(0001). The study shows that the water molecules in the first intact $H_2O$ bilayer spontaneously release a proton to NH3 adsorbates to produce $NH_4{^+}$. However, such proton transfer does not occur for $H_2O$, OH, and H in a mixed adsorption layer or for $H_2O$ in a thick ice film surface.

  • PDF

A Study on the Performance Characteristics of the Soft Ice Cream Machine Run by Refrigerant Mixture (R-290/R-32) (혼합냉매(R-290/R-32)를 사용하는 소프트 아이스크림 제조기의 성능 특성에 관한 연구)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.719-725
    • /
    • 2017
  • Frozen milk products are commonly made in small refrigeration machines. R-502 has long been used as a refrigerant for soft ice cream machines, but it is being replaced with R-404A due to the issue of ozone layer depletion. However, R-404A has high global warming potential, so it also needs to be replaced. In this study, a mixture of R-290 and R-32 was considered as a new refrigerant. An optimization and performance evaluation of the mixture were conducted for a freezer volume of 2.8 liters. The focus of the optimization was the appropriate refrigerant charge and the opening of the expansion valve. At the optimized conditions, ice cream was produced in 6 minutes and 24 seconds with the mixture, and the COP was 0.83. For R-404A, the ice cream production time was 6 minutes and 22 seconds, and the COP was 0.90. The results may be used for the design of food refrigeration machines and to optimize other refrigeration cycles.

Real-time Segmentation of Black Ice Region in Infrared Road Images

  • Li, Yu-Jie;Kang, Sun-Kyoung;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we proposed a deep learning model based on multi-scale dilated convolution feature fusion for the segmentation of black ice region in road image to send black ice warning to drivers in real time. In the proposed multi-scale dilated convolution feature fusion network, different dilated ratio convolutions are connected in parallel in the encoder blocks, and different dilated ratios are used in different resolution feature maps, and multi-layer feature information are fused together. The multi-scale dilated convolution feature fusion improves the performance by diversifying and expending the receptive field of the network and by preserving detailed space information and enhancing the effectiveness of diated convolutions. The performance of the proposed network model was gradually improved with the increase of the number of dilated convolution branch. The mIoU value of the proposed method is 96.46%, which was higher than the existing networks such as U-Net, FCN, PSPNet, ENet, LinkNet. The parameter was 1,858K, which was 6 times smaller than the existing LinkNet model. From the experimental results of Jetson Nano, the FPS of the proposed method was 3.63, which can realize segmentation of black ice field in real time.