• Title/Summary/Keyword: Ice Freezing

Search Result 272, Processing Time 0.028 seconds

Mathematical Relationship between Ice Dendrite Size and Freezing Conditions in Tuna

  • Choi, Mi-Jung;Hong, Geun-Pyo;In, Dae-Sik;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.330-335
    • /
    • 2009
  • The principal objective of this study was to investigate changes in ice dendrite size during the freezing of tuna, in order to formulate a mathematical model of ice dendrite size. The tuna was frozen via a uni-directional heat transfer. Thermogram analysis allowed us to determine the position of the freezing front versus time, which is referred to as the freezing front rate. The morphology of the ice dendrites was assessed via scanning electron microscopy after freeze-drying, and the retained pore size was measured as ice dendrites. We noted that the mean size of ice dendrites increased with the distance to the cooling plate; however, it decreased with reductions in the cooling rate and the cooling temperature. In addition, shorter durations of the freeze-drying process decreased the freezing front rate, resulting in a larger size of the ice dendrite pores that operate as water vapor sublimation channels. According to our results, we could derive a linear regression as an empirical mathematical model equation between the ice dendrite size and the inverse of the freezing front rate.

Changes in Ice Dendrite Size during Freezing Process in Gelatin Matrix as a Model Food System (모델 식품으로 젤라틴 매트릭스에서 동결과정에 따른 얼음 결정체 변화)

  • Min, Sang-Gi;Hong, Geun-Pyo;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.28 no.3
    • /
    • pp.312-318
    • /
    • 2008
  • The objective of this study was to investigate the changes in ice dendrite size during freezing process in gelatin matrix as a model food system in order to provide mathematical relation between freezing condition and ice dendrite size. Gelatin gel as a model matrix was frozen in unidirectional Neumann's type of heat transfer. The thermograms' analysis allowed to determine the freezing temperature of the sample, the position of the freezing front versus time, and thus, freezing front rate. The morphology of ice dendrites was observed by scanning electron microscopy after freeze-drying. We observed that the means size of ice dendrite increased with the distance to the cooling plate; however, it decreased with the cooling rate and the cooling temperature. In addition, the shorter durations of the freeze-drying process was shorter decreeing the decreased the freezing front rate, resulted in their resulting in a larger pore size of the ice dendrite pores for the sublimation channel of that operate as water vapor sublimation channels. From these results, we could derive a linear regression as an empirical mathematical model equation between the ice dendrite size and the inverse of freezing front rate.

On Study of Summertime Ice Formation in the Ice Valley at Unchiri, Gangwon-Province (강원도 정선군 운치리 얼음골의 여름철 결빙현상에 관한 연구)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.857-863
    • /
    • 2002
  • The meteorological elements were measured to investigate cause of summertime ice formation at Unchiri, Gangwon Province. The cause of freezing at valley was conformed as adiabatic expansion theory, latent heat of evaporation, natural convective theory, cold air remain theory, and convective freezing theory according to former study. However nither theory produced a satisfactory explanation. This studying area is not valley but ridge, and underground water surface exists at below than freezing height. wintertime temperature drop and summertime cold air spouting were explain as natural convective theory, generation of water drop on the rock was explained as cooling theory by air expansion, and ice formation on the rock was explained as adiabatic expansion theory. In conclusion, formation of ice valley at Unchiri was formed by natural convective theory, adiabatic expansion theory, and latent heat of evaporation successively.

An Experimental Study for the Liquid Freezing Phenomena in a Pipe During Ice Plugging (결빙 관막음시 배관내 유체 결빙현상의 실험적 연구)

  • Park, Yeong-Don;Jo, Hyeon-Cheol;Choe, Byeong-Ik;Kim, Gwi-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.366-372
    • /
    • 2001
  • The ice plugging process consists of placing liquid nitrogen around a pipe and removing heat until the water in the pipe freezes and provides a solid plug or seal against fluid movement. This technique enables us to repair or inspect a pipe system without shutdown of entire system. A set of test apparatus for investigation of the liquid freezing phenomena during ice plugging is prepared. This study shows the characteristics of the liquid freezing and the heat transfer with various pipe and freezing jacket conditions. And in case there is flow of the fluid inside the pipe, the flow rate which can be able to form the ice plug is identified with the effect of the pipe diameter and freezing jacket length on the plug formation. The permissible maximum flow rate for the complete plug formation is approximately proportional to the freezing jacket length at the same pipe diameter condition.

Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices

  • Kim, Byeongsoo;Gil, Hyung Bae;Min, Sang-Gi;Lee, Si-Kyung;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.34 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from $-20^{\circ}C$ to $-50^{\circ}C$) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from $-0.2^{\circ}C$ (10% gelatin) to $-6.7^{\circ}C$ (40% gelatin), while the extent of supercooling did not show any specific trends. The rheological properties of the gelatin indicate that both the storage (G') and loss (G") moduli were steady in the strain amplitude range of 0.1-10%. To characterize gelatin matrices formed by the various freezing methods, the ice crystal sizes which were being determined by the scanning electron microscopy (SEM) are affected by the gelatin concentrations. The ice crystal sizes are affected by gelatin concentrations and freezing temperature, while the size distributions of ice crystals depend on the freezing methods. Smaller ice crystals are being formed with PSF rather than under the atmospheric control where the freezing temperature is above $-40^{\circ}C$. Thus, the results of this study indicate that the PSF processing at a very low freezing temperature ($-50^{\circ}C$) offers a potential advantage over commercial atmospheric freezing points for the formation of small ice crystals.

Stable Anisotropic Freezing Modeling Technique Using the Interaction between IISPH Fluids and Ice Particles (안정적이고 이방성한 빙결 모델링을 위한 암시적 비압축성 유체와 얼음 입자간의 상호작용 기법)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.5
    • /
    • pp.1-13
    • /
    • 2020
  • In this paper, we propose a new method to stable simulation the directional ice shape by coupling of freezing solver and viscous water flow. The proposed ice modeling framework considers viscous fluid flow in the direction of ice growth, which is important in freezing simulation. The water simulation solution uses the method of applying a new viscous technique to the IISPH(Implicit incompressible SPH) simulation, and the ice direction and the glaze effect use the proposed anisotropic freezing solution. The condition in which water particles change state to ice particles is calculated as a function of humidity and new energy with water flow. Humidity approximates a virtual water film on the surface of the object, and fluid flow is incorporated into our anisotropic freezing solution to guide the growth direction of ice. As a result, the results of the glaze and directional freezing simulations are shown stably according to the flow direction of viscous water.

Numerical Analysis for Cooling and Freezing Processes with Subcooling (과냉각을 동반한 동결과정의 수치해석)

  • Yoon, J.I.;Kim, J.D.;Kim, S.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.451-462
    • /
    • 1996
  • In this study, which focuses on ice storage, a fundamental study in cooling and solidification was performed, including the interesting phenomena of density inversion, supercooling and dendritic ice. A numerical study was performed for natural convection and ice formation considering existence of subcooling and dendritic ice were analyzed numerically by using finite difference method and boundary fixing method. In the mesh, the solid fraction was introduced with adding as a term to the energy conservation equation. A flow in the dendrite was modelled as a flow in a porous medium, and the momentum conservation equation was modified to incorporate resistance forces involved in flows through porous media. A numerical solution of the time dependencies of dendrite area and dense ice front was successfully obtained, and the numerical results were good agreement with experimental results. Based on this methodology, a discussion was made of phenomena and characteristics of cooling and freezing processes under various conditions.

  • PDF

Integrity Evaluation of Ice Plugged Pipes Applied on Short Jacket

  • Park, Yeong-Don;Son, Geum-Su
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.105-116
    • /
    • 2002
  • In special industrial fields such 3s nuclear power plants and chemical plants, it is often necessary to repair system components without plant shutdown or drainage of system having many piping structures which may have hazardous or expensive fluid. A temporary ice plugging method for blocking internal flow is considered as a useful method in that case. According to the pipe freezing guideline of the nuclear power plant, the length of a freezing jacket must be longer than twice of the pipe diameter. However, for applying the ice plugging to short pipes which do not have enough freezing length because of geometrical configuration, it is inevitable to use shorter jacket less than twice of the pipe diameter. In this study, the integrity evaluation for short pipes in the nuclear power plant Is conducted by an experiment and the finite element analysis. From the results, the ice plugging process in short pipes can be safely carried out without any plastic deformation and fracture.

Numerical Analysis of Freezing Phenomena of Water in a U-Type Tube (U자형 배관 내 결빙에 대한 해석적 연구)

  • Park, Yong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.52-58
    • /
    • 2019
  • This study numerically analyzed the icing process in a U-shaped pipe exposed to the outside by considering the mushy zone of freezing water. Numerical results showed that the flow was pulled outward due to the U-shaped bend in the freezing section exposed to the outside, which resulted in the ice wave formation on the wall of the bended pipe behind. At the same time, the formation of a corrugated ice layer became apparent due to the venturi effect caused by the ice. The factors affecting the freezing were investigated, including the change of the pipe wall temperature, the water inflow velocity, and the pipe bend spacing. It was found that, as a whole, the thickness of the freezing layer increased as the pipe wall temperature decreased. It was also found that the freezing layer became relatively thin when the inflow rate of water was increased, and that the spacing of the pipe bends did not significantly impact the change in the freezing layer.

Experimental Studies of Characteristics of Strength and Deformation Behaviour of Frozen and Cyclic Frozen-thawed Clayey Soils (동결 및 동결-융해작용을 받는 점성토의 강도와 그의 변형거동)

  • 유능환;유영선;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.112-119
    • /
    • 1991
  • Some experiments were carried out to investigate the effects of freezing and thawing on the strength and strain characteristics of alluvial silty clay under the different temperatures, loading and moisture conditions. The results were as follows; 1. The soil used was proved to be consisted of silty clay with honey-combed structure, and showed higher dilatancy, frost activity and lower stability in natural state. 2. Soil treated with freezing and thawing cycles showed lower compressive strength compared with the non treated, The strength decreased with incement of freezing and thawing cycles. It's shapes of stress-strain curves were flat and did not formulate a peak while the peak strength of higher moisture content soil decreased with the increment of moisture content. It's decrement ratio was most distinctly shown at the first one cycle of freezing and thawing. 3. The cohesion decreased due to freezing and thawing cycles but internal frcition angle was not changed. 4. The liquid limit decreased with increment of freezing and thawing cycles, and became almost constant after three cycles of freezing and thawing. 5. The strength under simple loading at failure mode was appeared to be higher compared with the cyclic loading after freezing and thawing but initial moisture content effect was not observed. 6. Ice lense was not observed within 50% of ice content ratio but observed over 100%. The higher the ice content ratio, the higher the peak strength. As a matter of fact, it seems that an optimum ice content ratio exists for plastic mode and the least compressive strength.

  • PDF