Purpose: This study was designed to elucidate the energy-utilization patterns for five methods of robo production. Methods: Robo (fried melon cake) was produced using five different methods, and the energy used for each unit operation was calculated using standard equations. The sensory attributes of the products were determined by panelists. Data were analyzed using descriptive analysis and analysis of variance at p < 0.05. Results: The energy demands for processing 2.84 kg of melon seed into robo (fried melon cake) using processes 1 (traditional method), 2, 3, 4, and 5 (improved methods) were 50,599.5, 21,793.6, 20,379.7, 21,842.9, and 20,429.3 kJ, respectively. These are equivalent to energy intensities of 1,7816.7, 7,673.8, 7,175.9, 7,691.2, and 7,193.4 kJ/kg, respectively. For the traditional process, the frying operation consumed the highest energy (21,412.0 kJ), and the mixing operation consumed the lowest energy (675.0 kJ). For the semi-mechanized processes, the molding operation consumed the highest energy (6,120.0 kJ), and the dry milling consumed the lowest energy (14.4 kJ). Conclusions: The energy-consumption patterns were functions of the type of unit operation, the technology involved in the operations, and the size of the equipment used in the whole processing operation. Robo produced via the milling of dried melon seed before oil expression was rated highest with regard to the aroma and taste quality, as well as the overall acceptability of the sensory evaluation, and required the lowest energy consumption. Full mechanization of the process line has potential for further reduction of the energy demand.