• Title/Summary/Keyword: IZTO/Ag/IZTO

Search Result 4, Processing Time 0.02 seconds

Surface Plasmon Resonance Effect of Ag Layer Inserted in a Highly Flexible Transparent IZTO/Ag/IZTO Multilayer Electrode for Flexible Organic Light Emitting Diodes

  • Park, Ho-Kyun;Jun, Nam-Ho;Choi, Kwang-Hyuk;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.601-604
    • /
    • 2008
  • We report on the Ag thickness effect on the electrical and optical properties of indium zinc tin oxide (IZTO)-Ag-IZTO multilayer electrode grown on a PET substrate and the surface plasmon effect of Ag layer on the optical properties of IZTO-Ag-IZTO electrode. Using an IZTO-Ag-IZTO multilayer with a total thickness below ~80 nm, we can obtain high-quality flexible electrode with very low sheet resistance, high transmittance, high work function and superior flexibility.

  • PDF

Fabrication and analysis of flexible and transparent antenna on polyamide substrate for laptop computer (폴리아미드 기판에 제작된 노트북용 플렉서블 투명 전극 안테나의 제작 및 분석)

  • Lee, Changmin;Kim, Ilkwon;Kim, Youngsung;Kim, Yongjin;Jung, Changwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4457-4462
    • /
    • 2014
  • This paper presents an antenna design that can be applied to flexible transparent conducting film. The antennas shaping PIFA (Planar Inverted F-shpae Antenna) were produced on polyamide substrates, which are flexible. The IZTO/Ag/IZTO multilayer films were used for the antennas and exhibited superior electrical, optical and flexible characteristics. This study compared the transparency and performance of two antennas (IZTO/Ag/IZTO multilayer film, and Ag monolayer film). The operation frequencies were set to 5.18~5.32 GHz of WLAN (802.11a). The performance showed a maximum efficiency and peak gain of 89 % and 5.86 dBi, respectively.

Ag thickness effect on electrical and optical properties of flexible IZTO/Ag/IZTO multilayer anode grown on PET

  • Nam, Ho-Jun;Cho, Sung-Woo;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.379-379
    • /
    • 2007
  • The characteristics of indium-zinc-tin-oxide (IZTO)-Ag-IZTO multilayer grown on a PET substrate were investigated for flexible organic light-emitting diodes. The IZTO-Ag-IZTO (IAI) multilayer anode exhibited a remarkably reduced sheet resistance of 4 ohm/sq and a high transmittance of 84%, despite the very thin thickness of the IZTO (30 nm) layer. In addition, it was shown that electrical and optical properties of IAI anodes are critically dependent on the thickness of the Ag layer, due to the transition of Ag atoms from distinct islands to continuous films at a critical thickness (14 nm). Moreover, the IAI/PET sample showed more stable mechanical properties than an amorphous ITO/PET sample during the bending test due to the existence of a ductile Ag layer. The current density voltage-luminance characteristics of flexible OLEDs fabricated on an IAI/PET substrate was better than those of flexible OLEDs fabricated on an ITO/PET substrate. This indicates that IAI multilayer anodes are promising flexible and transparent electrodes for flexible OLEDs.

  • PDF

Glass Antenna Using Transparent IZTO/Ag/IZTO Multilayer Electrode (IZTO/Ag/IZTO 다층 투명전극을 이용한 안경용 웨어러블 안테나)

  • Hong, Seungman;Kim, Youngsung;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.372-377
    • /
    • 2016
  • Communication flow is changing rapidly. Recently, a range of wearable devices such as wearable glasses and wearable watch, have been launched. These kinds of wearable devices help people to live a more comfortable life. Wearable devices most have an antenna for wireless communication. This paper reports a transparent antenna that is made of an optically transparent material for wearable glasses. Transparent antenna can be applied to smart windows and will not disturb the view of user. IZTO/Ag/IZTO multilayer electrode has higher electrical and optical properties. This antenna is available because of its good electrical properties. This study measured the performance of the proposed transparent antenna, which is made of a multilayer electrode, applied to a lens. The proposed antenna was simulated with several substrates. The antenna impedance was matched with length and width of the antenna. The antenna's conductivity and transparency was measured using a HMS-3000 and UV-spectrometer. A 40nm thick Ag single layer antenna was fabricated on a flexible polyimide substrate for comparing the antenna performances. The fabricated antenna is useable at a frequency of 2.4-2.5GHz, which is suitable for Wifi communications and has peak gain of 2.89dBi and an efficiency of 34%.