• Title/Summary/Keyword: ITT Imager

Search Result 2, Processing Time 0.015 seconds

GOES-9 IMAGER DATA ANLYSIS FOR THE PREPRATION OF THE COMS MI OPERATION

  • LIM Hyun-Su;PARK Durk-Jong;KOO In-Hoi;KANG Chi-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.462-465
    • /
    • 2005
  • The ITT Industry's Commercial Advanced Geo-Imager (CAGI) which is a recurrent version of imagers used in the GOES series was selected as the COMS Meteorological Imager (MI). The ITT Imager can conduct some special observation such as the space look, blackbody observation, and star sensing regularly or irregularly for its radiometric quality control. Because the GOES-9 which uses an ITT Imager has become operational over the Western Pacific and Eastern Asia positioned at 155 degrees East, the reception of the GOES-9 data is available in Korea. As a step of preparing the COMS MI operation, we conduct the analysis of the GOES-9 imager raw data and operation procedures and compare them with contents of the ITT Imager's manual.

  • PDF

DESIGN OF MI DECOMPOSITION MODULE FOR THE COMS IMPS

  • Seo, Seok-Bae;Kang, Chi-Ho;Koo, In-Hoi;Ahn, Sang-Il;Kim, Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.267-270
    • /
    • 2006
  • COMS has two imaging payloads, MI (Meteorological Imager) and GOCI (Geostationary Ocean Colour Imager). In GOCI case, data are packaged per each slot - one part of 16 two-dimensional arrays for imaging sensors - so its generation algorithm is simple. But MI case, data are made up with sequences of 480 bit blocks and are transmitted to its ground station sequentially. Moreover there is no time information in each 480 bit MI block, so a system in its ground system should be attaching time information at received MI blocks. DM (Decomposition Module) is one module of IMPS that receives Raw Data from DATS and generates Level 0 Products that include time tagging. This paper explains DM design for MI of COMS payloads.

  • PDF