• 제목/요약/키워드: ITS sequencing

검색결과 809건 처리시간 0.025초

PCR-RFLP and Sequence Analysis of the rDNA ITS Region in the Fusarium spp.

  • Min, Byung-Re;Lee, Young-Mi;Choi, Yong-Keel
    • Journal of Microbiology
    • /
    • 제38권2호
    • /
    • pp.66-73
    • /
    • 2000
  • To investigate the genetic relationship among 12 species belonging to the Fusarium section Martiella, Dlaminia, Gibbosum, Arthrosporiella, Liseola and Elegans, the internal transcribed spacer(ITS) regions of ribosomal DNA (rDNA) were amplified with primer pITS1 and pITS4 using the polymerase chain reaction(PCR). After the amplified products were digested with 7 restriction enzymes, restriction fragment length polymorphism (RFLP) patterns were analyzed. The partial nucleotide sequences of the ITS region were determined and compared. Little variation was observed in the size of the amplified product having sizes of 550bp or 570bp. Based on the RFLP analysis, the 12 species studied were divided into 5 RFLP types. In particular, strains belonging to the section Martiella were separated into three RFLP types. Interestingly, the RFLP type of F. solani f. sp. piperis was identical with that of isolates belonging to the section Elegans. In the dendrogram derived from RFLP analysis of the ITS region, the Fusarium spp. examined were divided into two major groups. In general, section Martiella excluding F. solani f. sp. piperis showed relatively low similarity with the other section. The dendrogram based on the sequencing analysis of the ITS2 region also gave the same results as that of the RFLP analysis. As expected, 5.8S, a coding region, was highly conserved, whereas the ITS2 region was more variable and informative. The difference in the ITS2 region between the length of F. solani and its formae speciales excluding F. solani f. sp. piperis and that of other species was caused by the insertion/deletion of nucleotides in positions 143-148 and 179-192.

  • PDF

고구마 유전체 연구현황 및 전망 (Current status of sweetpotato genomics research)

  • 윤웅한;정재철;곽상수;양정욱;김태호;이형운;남상식;한장호
    • Journal of Plant Biotechnology
    • /
    • 제42권3호
    • /
    • pp.161-167
    • /
    • 2015
  • 고구마는 척박한 환경에서도 생육이 가능한 세계 7대 농작물로 식량뿐만 아니라 사료용, 전분 등의 산업용으로도 중요하다. 최근 고구마는 항산화물질, 식이섬유질 등을 고함유하는 건강식품으로 각광을 받고 있다. 그러나 고구마 유전체 해독에 관한 연구는 고구마의 중요도에 비해 많이 이루어지지 않고 있다. 본 총설의 목적은 고구마 유전체 연구 동향분석을 통하여 유전체 해독 연구의 효율성 증대 및 유용형질 유전자의 실용화 연구를 위한 기반구축을 모색하는데 있다. 최근 NGS 분석을 통한 동식물 유전체해독이 급진적으로 많이 이루어지고 있다. 고구마 유전체 해독의 경우는 다배수성 문제와 이질유전체 문제로 유전체 완전해독 연구가 이루어지지 않고 있으며 반면 전사체 분석 연구는 활발히 이루어지고 있는 실정이다. 최근 2015년 일본 연구자들에 의해 2배체 고구마의 유전체 해독 초안이 보고되었다. 한중일 고구마 연구협의회(Trilateral Research Association of Sweetpotato, TRAS)에 의해 6배체 고구마 Xushu 18의 유전자지도 작성 및 유전체 해독 연구가 2014년부터 이루어지고 있다. 빌게이츠재단(Bill & Melinda Gates Foundation)은 사하라사막 남쪽 아프리카지역의 기근과 영양문제를 해결하기 위해 고구마 유전체 기반 분자육종을 위한 분자도구 개발에 관한 프로젝트를 미국을 중심으로 한 컨소시엄을 구성하여 출범하였다. 고구마 유전체 해독과정 중에 분석된 고구마 엽록체 유전체 분석을 통하여 진화학적 해석연구가 이루어지고 있다. 본 총설을 통하여 고구마 유전체 해독 연구동향을 살펴보았다. 이러한 연구 동향 분석은 고구마의 생산성 및 기능성 향상 등의 실용화 연구를 수행하는 연구자들에게 최근의 연구현황을 제공할 수 있을 것이며 세계적인 식량, 에너지, 환경문제의 해결에 크게 기여 할 것으로 생각된다.

Highlighting the Microbial Community of Kuflu Cheese, an Artisanal Turkish Mold-Ripened Variety, by High-Throughput Sequencing

  • Talha Demirci
    • 한국축산식품학회지
    • /
    • 제44권2호
    • /
    • pp.390-407
    • /
    • 2024
  • Kuflu cheese, a popular variety of traditional Turkish mold-ripened cheeses, is characterized by its semi-hard texture and blue-green color. It is important to elucidate the microbiota of Kuflu cheese produced from raw milk to standardize and sustain its sensory properties. This study aimed to examine the bacteria, yeasts, and filamentous mold communities in Kuflu cheese using high-throughput amplicon sequencing based on 16S and ITS2 regions. Lactococcus, Streptococcus, and Staphylococcus were the most dominant bacterial genera while Bifidobacterium genus was found to be remarkably high in some Kuflu cheese samples. Penicillium genus dominated the filamentous mold biota while the yeasts with the highest relative abundances were detected as Debaryomyces, Pichia, and Candida. The genera Virgibacillus and Paraliobacillus, which were not previously reported for mold-ripened cheeses, were detected at high relative abundances in some Kuflu cheese samples. None of the genera that include important food pathogens like Salmonella, Campylobacter, Listeria were detected in the samples. This is the first experiment in which the microbiota of Kuflu cheeses were evaluated with a metagenomic approach. This study provided an opportunity to evaluate Kuflu cheese, which was previously examined for fungal composition, in terms of both pathogenic and beneficial bacteria.

Nano Pillar Array 사출성형을 이용한 DNA 분리 칩 개발 (Development of the DNA Sequencing Chip with Nano Pillar Array using Injection Molding)

  • 김성곤;최두선;유영은;제태진;김태훈;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1206-1209
    • /
    • 2005
  • In recent, injection molding process for features in sub-micron scale is under active development as patterning nano-scale features, which can provide the master or stamp for molding, and becomes available around the world. Injection molding has been one of the most efficient processes for mass production of the plastic product, and this process is already applied to nano-technology products successfully such as optical storage media like DVD or BD which is a large area plastic thin substrate with nano-scale features on its surface. Bio chip for like DNA sequencing may be another application of this plastic substrate. The DNA can be sequenced using order of 100 nm pore structure when making the DNA flow through the pore structure. Agarose gel and silicon based chip have been used to sequence the DNA, but injection molded plastic chip may have benefit in terms of cost. This plastic DNA sequencing chip has plenty of pillars in order of 100 nm in diameter on the substrate. When the usual features in case of DVD or BD have very low aspect ratio, even less than 0.5, but the DNA chip will have relatively high aspect ratio of about 2. It is not easy to injection mold the large area thin substrate with sub-micron features on its surface due to the characteristics of the molding process and it becomes much more difficult when the aspect ratio of the features becomes high. We investigated the effect of the molding parameters for injection molding with high aspect ratio nano-scale features and injection molded some plastic DNA sequencing chips. We also fabricated PR masters and Ni stamps of the DNA chip to be used for molding

  • PDF

SNU-16 위암 세포의 mRNA 및 miRNA 프로파일에 미치는 제주조릿대 추출물의 영향 (Effects of Sasa quelpaertensis Extract on mRNA and microRNA Profiles of SNU-16 Human Gastric Cancer Cells)

  • 장미경;고희철;김세재
    • 생명과학회지
    • /
    • 제30권6호
    • /
    • pp.501-512
    • /
    • 2020
  • 제주조릿대 잎은 항염, 해열 및 이뇨작용을 가지고 있어 위궤양, 목마름 및 토혈 치료를 위한 민간의약으로 사용되어 왔다. 본 저자들은 제주조리대 잎에서 분리한 피토케미칼 풍부 추출물(PRE)과 그 에틸아세테이트 분획물(EPRE)은 여러 위암 세포주에서 세포사멸을 유도하는 항암 효과가 있다고 보고한 바 있다. 본 연구는 EPRE의 세포사멸 유도 기전에 관여하는 분자표적들을 탐색하기 위하여 EPRE을 처리한 SNU-16 세포에서 mRNA와 microRNA (miRNA)의 프로파일 변화를 분석하였다. RNA sequencing 분석을 통해 총 2,875개의 차등적으로 발현되는 유전자들(DEGs)을 동정하였다. 유전자 온톨로지(GO)와 KEGG 경로 분석 결과, EPRE는 세포사멸, 유사 분열-활성화 단백질 키나제(MAPK) 및 염증 반응, 종양 괴사 인자(TNF) 신호 전달 및 암 경로에 관여하는 유전자들의 발현을 조절하는 것으로 나타났다. 단백질-단백질 상호 작용(PPI) 네트워크 분석으로 세포사멸 및 세포죽음과 관련된 유전자들 간의 상호작용들을 확인할 수 있었다. 그리고, miRNA sequencing 분석을 통해 총 27개의 차별적으로 발현되는 miRNAs (DEMs)를 동정하였다. GO와 KEGG 경로 분석 결과, EPRE는 세포주기, 세포사멸 및 tropomyosin-receptor-kinase (TRK) 수용체 신호 전달, 성장인자-β(TGF-β), 핵인자 κB (NF-κB) 및 암 경로에 관여하는 miRNAs의 발현을 조정하였다. 본 연구결과는 EPRE의 항암 효과의 근본적인 메커니즘에 대한 통찰력을 제공한다.

PAIVS: prediction of avian influenza virus subtype

  • Park, Hyeon-Chun;Shin, Juyoun;Cho, Sung-Min;Kang, Shinseok;Chung, Yeun-Jun;Jung, Seung-Hyun
    • Genomics & Informatics
    • /
    • 제18권1호
    • /
    • pp.5.1-5.5
    • /
    • 2020
  • Highly pathogenic avian influenza (HPAI) viruses have caused severe respiratory disease and death in poultry and human beings. Although most of the avian influenza viruses (AIVs) are of low pathogenicity and cause mild infections in birds, some subtypes including hemagglutinin H5 and H7 subtype cause HPAI. Therefore, sensitive and accurate subtyping of AIV is important to prepare and prevent for the spread of HPAI. Next-generation sequencing (NGS) can analyze the full-length sequence information of entire AIV genome at once, so this technology is becoming a more common in detecting AIVs and predicting subtypes. However, an analysis pipeline of NGS-based AIV sequencing data, including AIV subtyping, has not yet been established. Here, in order to support the pre-processing of NGS data and its interpretation, we developed a user-friendly tool, named prediction of avian influenza virus subtype (PAIVS). PAIVS has multiple functions that support the pre-processing of NGS data, reference-guided AIV subtyping, de novo assembly, variant calling and identifying the closest full-length sequences by BLAST, and provide the graphical summary to the end users.

Perspectives of Integrative Cancer Genomics in Next Generation Sequencing Era

  • Kwon, So-Mee;Cho, Hyun-Woo;Choi, Ji-Hye;Jee, Byul-A;Jo, Yun-A;Woo, Hyun-Goo
    • Genomics & Informatics
    • /
    • 제10권2호
    • /
    • pp.69-73
    • /
    • 2012
  • The explosive development of genomics technologies including microarrays and next generation sequencing (NGS) has provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and progression. Recent efforts to establish the huge cancer genome compendium and integrative omics analyses, so-called "integromics", have extended our understanding on the cancer genome, showing its daunting complexity and heterogeneity. However, the challenges of the structured integration, sharing, and interpretation of the big omics data still remain to be resolved. Here, we review several issues raised in cancer omics data analysis, including NGS, focusing particularly on the study design and analysis strategies. This might be helpful to understand the current trends and strategies of the rapidly evolving cancer genomics research.

Microbial Community Analysis using RDP II (Ribosomal Database Project II):Methods, Tools and New Advances

  • Cardenas, Erick;Cole, James R.;Tiedje, James M.;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • 제14권1호
    • /
    • pp.3-9
    • /
    • 2009
  • Microorganisms play an important role in the geochemical cycles, industry, environmental cleanup, and biotechnology among other fields. Given the high microbial diversity, identification of the microorganism is essential in understanding and managing the processes. One of the most popular and powerful method for microbial identification is comparative 16S rRNA gene analysis. Due to the highly conserved nature of this essential gene, sequencing and later comparison of it against known rRNA databases can provide assignment of the bacteria into the taxonomy, and the identity of its closest relatives. Isolation and sequencing of 16S rRNA genes directly from natural environments (either from DNA or RNA) can also be used to study the structure of the whole microbial community. Nowadays, novel sequencing technologies with massive outputs are giving researchers worldwide the chance to study the microbial world with a depth that was previously too expensive to achieve. In this article we describe commonly used research approaches for the study of individual microorganisms and microbial communities using the tools provided by Ribosomal Database Project website.

Sequencing and Characterization of Divergent Marbling Levels in the Beef Cattle (Longissimus dorsi Muscle) Transcriptome

  • Chen, Dong;Li, Wufeng;Du, Min;Wu, Meng;Cao, Binghai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권2호
    • /
    • pp.158-165
    • /
    • 2015
  • Marbling is an important trait regarding the quality of beef. Analysis of beef cattle transcriptome and its expression profile data are essential to extend the genetic information resources and would support further studies on beef cattle. RNA sequencing was performed in beef cattle using the Illumina High-Seq2000 platform. Approximately 251.58 million clean reads were generated from a high marbling (H) group and low marbling (L) group. Approximately 80.12% of the 19,994 bovine genes (protein coding) were detected in all samples, and 749 genes exhibited differential expression between the H and L groups based on fold change (>1.5-fold, p<0.05). Multiple gene ontology terms and biological pathways were found significantly enriched among the differentially expressed genes. The transcriptome data will facilitate future functional studies on marbling formation in beef cattle and may be applied to improve breeding programs for cattle and closely related mammals.

연속회분식반응조에서 호흡률에 기반한 포기공정의 예측제어 (Predictive aeration control based on the respirometric method in a sequencing batch reactor)

  • 김동한
    • 상하수도학회지
    • /
    • 제33권6호
    • /
    • pp.481-489
    • /
    • 2019
  • As aeration is an energy-intensive process, its control has become more important to save energy and to meet strict effluent limits. In this study, predictive aeration control based on the respirometric method has been applied to the sequencing batch reactor (SBR) process. The variation of the respiration rate by nitrification was great and obvious, so it could be a very useful parameter for the predictive aeration control. The maximum respiration rate due to nitrification was about 60 mg O2/L·h and the maximum specific nitrification rate was about 7.5 mg N/g MLVSS·h. The aeration time of the following cycle of the SBR was daily adjusted in proportion to that which was previously determined based on the sudden decrease of respiration rate at the end of nitrification in the respirometer. The aeration time required for nitrification could be effectively predicted and it was closely related to influent nitrogen loadings. By the predictive aeration control the aerobic period of the SBR has been optimized, and energy saving and enhanced nitrogen removal could be obtained.