• Title/Summary/Keyword: ITS region sequence

검색결과 544건 처리시간 0.135초

$V_H$ Gene Expression and its Regulation on Several Different B Cell Population by using in situ Hybridization technique

  • Jeong, Hyun-Do
    • 한국어병학회지
    • /
    • 제6권2호
    • /
    • pp.111-122
    • /
    • 1993
  • B 세포의 $V_H$ 유전자가 어떠한 기작으로 선택되어지는 지는 현재 명확히 밝혀져 있지 않다. 본 연구에서는 transformation 등의 방법에 의한 편향된 분석결과를 피하고자 in situ hybridization 기법을 이용하여 정상적인 single 세포가 발현한 $V_H$ 유전자를 분석하였다. $V_H$ 유전자간에 나타나는 DNA 배열의 유사성 때문에 in situ 기법에서 가장 중요한 것은 probe 농도와 세척 stringency의 결정이다. LPS-stimulated된 spleen B 세포에 대해서 $C{\mu}$$V_HJ558$ $^{35}S$-RNA probe는 $2{\sim}4{\times}106cpm$/slide의 농도에서 낮은 background와 적정수의 positive 세포를 관찰할 수 있었으며 세척조건으로서는 $54^{\circ}C$에서 40~50%의 formamide를 사용할때 최적이라는 것을 $C{\mu}$, $V_{H}S107$, 그리고 $V_{H}J558$ probe를 이용한 실험에서 결정하였다. 위의 조건하에서 spleen B 세포가 발현한 $V_H$ 유전자를 분석하여 본 결과 각각의 $V_H$ gene family 발현 빈도는 각각의 family 크기에 비례하여 결정된다는 것을 알 수 있었다. 이러한 결과들은 여러 다른 발달 단계에 있는 bone marrow B 세포에 대해서도 동일한 결과를 보여 주어 어떤 특수 $V_H$ gene family의 발현이 B 세포의 발달단계에 따라 특이하게 변화하는 것은 아니라는 것을 나타내 보여 주었다. 그러므로 $V_H$ 유전자의 이용은 B 세포가 differentiation하는 것과는 무관하게 무작위 적으로 선택되어 진다는 것을 밝혔다.

  • PDF

Bacillus sp. J105 유래 β-lactamase 유전자의 cloning 및 E. coli 내에서의 발현 분석 (Cloning of the β-Lactamase Gene from Bacillus sp. J105 and Analysis of Its Expression in E. colis Cells)

  • 강원대;임학섭;서민정;김민정;이혜현;조경순;강병원;서권일;최영현;정영기
    • 생명과학회지
    • /
    • 제18권11호
    • /
    • pp.1592-1599
    • /
    • 2008
  • $\beta$-Lactam계 항생물질에 강한 내성을 가지는 균주 Bacillus sp. J105가 생산하는 $\beta$-lactamase의 유전자를 E. coli DH5$\alpha$에 cloning하였다. Cosmid vector pLAFR3을 이용하여, Sau3AI 으로 부분 분해한 chromosomal DNA와 BamHI으로 처리한 pLAFR3을 ligation하였다. In vitro packaging kit를 사용하여 E. coli에 형질도입 하였으며 $\beta$-lactamase양성 clone주를 획득하였다. 이 recombinant plasmid ($\beta$-lac+)를 pACYC184 (4.2kb) vector를 사용하여 subcloning 하여 최종 $\beta$-lactamase의 활성이 있는 6.4 kb 단편이 포함된 pKL11${\Delta}4.6$을 제작하였다. 이 단편을 DNA 염기서열을 분석한 결과 309개의 아미노산으로 구성된 $\beta$-lactamase를 코딩하는 927 bp를 포함하고 있었다. 클로닝된 $\beta$-lactamase 유전자의 upstream을 포함하는 170 bp의 염기서열을 분석한 결과, B. thuringinesis와 B. cereus 유래의 $\beta$-lactamase 유전자의 upstream 부위와 97%의 일치를 보였다. 본 연구에서 클로닝된 $\beta$-lactamase의 아미노산을 서열을 NCBI BLAST program을 이용하여 분석해 본 결과 B. thuringinesis와 B. cereus의 $\beta$-lactamase와 각각 97%와 94%의 일치를 보였다. 또한 계통도 분석 결과 역시 본 연구에서 클로닝된 $\beta$-lactamase의 아미노산을 서열은 B. thuringinesis와 B. cereus 와 유전학적으로 아주 밀접한 관계를 보여주었다. 이 pKL11-${\Delta}4.6$를 E. coli에서 형질전환 시켜 발현 양상을 조사해 본 결과 $\beta$-lactamase의 secretion efficiency는 약 $4{\sim}5%$%였다. E. coli의 세포 내 단백질로부터 $\beta$-lactamase를 정제하여 분자량을 확인한 결과 31 kDa로 wild type의 분자량과 일치함을 확인하였다.

종자내 아미노산 합성 조절 유전자에 관한 연구 (Amino Acid Biosynthesis and Gene Regulation in Seed)

  • 임용표;서미정;조수진;이정희;이효연
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1996년도 제10회 식물생명공학심포지움 고등식물 발생생물학의 최근 진보
    • /
    • pp.61-74
    • /
    • 1996
  • Human and monogastric animals can not synthesize 10 out of the 20 amino asids and therefor need to obtain these from their diet. The plant seed is a major source of dietary protein. It is particular important in their study to increase nutritional quality of the seed storage proteins. The low contents of lysine, asparagine and threonenein various cereal seeds and of cystein and methionine. In legume seeds is due to the low proportions of these amino acids in the major storage proteins, we have tried to apply the three strategies; (1) mutagenesis and selection of specific amino acid analogue resistance, (2) cloning and expression study of lysine biosynthesis related gene, (3) transfomation of lysine rich soybean glycinin gene. The 5-methyltryptophan (5MT) resistant cell lines, SAR1, SAR2 and SAR3 were selected from anther derived callus of rice (Oryza sativa L. "Sasanishiki"). Among these selected cell lines, two (SAR1 and SAR3) were able to grow stably at 200 mg/L of 5MT. Analysis of the freed amino acids in callus shows that 5MT resistant cells (SAR3) accumulated free tryptophan at least up to 50 times higher than those that of the higher than of SAS. These results indicated that the 5MT resistant cell lines are useful in studies of amino acid biosynthesis. Tr75, a rice (Oryza sativa L., var. Sasanishiki) mutant resistant to 5MT was segregated from the progenies of its initial mutant line, TR1. The 5MT resistant of TR75 was inherited in the M8 generations as a single dominant nuclear gene. The content of free amino acids in the TR75 homozygous seeds increased approximately 1.5 to 2.0 fold compared to wild-type seeds. Especially, the contents of tryptophan, phenylalanine and aspartic acid were 5.0, 5.3 and 2.7 times higher than those of wild-type seeds, respectively. The content of lysine is significantly low in rice. The lysine is synthesized by a complex pathway that is predominantly regulated by feedback inhibition of several enzymes including asparginase, aspatate kinase, dihydrodipicolinat synthase, etc. For understanding the regulation mechanism of lysine synthesis in rice, we try to clone the lysine biosynthetic metabolism related gene, DHPS and asparaginase, from rice. We have isolated a rice DHPS genomic clone which contains an ORF of 1044 nucleotides (347 amino acids, Mr. 38, 381 daltons), an intron of 587 nucleotides and 5'and 3'-flanking regions by screening of rice genomic DNA library. Deduced amino acid sequence of mature peptide domain of GDHPS clone is highly conserved in monocot and dicot plants whereas that of transit peptide domain is extremely different depending on plant specie. Southern blot analysis indicated that GDHPS is located two copy gene in rice genome. The transcripts of a rice GDHPS were expressed in leaves and roots but not detected in callus tissues. The transcription level of GDHPS is much higher in leaves indicating enormous chloroplast development than roots. Genomic DNA clones for asparaginase genes were screened from the rice genomic library by using plaque hybridization technique. Twelve different genomic clones were isolated from first and second screening, and 8 of 12 clones were analyzed by restriction patterns and identified by Southern Blotting, Restriction enzyme digestion patterns and Southern blot analysis of 8 clones show the different pattern for asparaginase gene. Genomic Southern blot analysis from rice were done. It is estimated that rice has at least 2-3 copy of asparaginase gene. One of 8 positive clones was subcloned into the pBluescript SK(+) vector, and was constructed the physical map. For transformation of lysine rich storage protein into tobacco, soybean glycinin genes are transformed into tobacco. To examine whether glycinin could be stably accumulated in endosperm tissue, the glycinin cDNA was transcriptionally fused to an endosperm-specific promotor of the rice storage protein glutelin gene and then introduced into tobacco genomic via Agrobacterium-mediated transformation. Consequently the glycinin gene was expressed in a seed-and developmentally-specific manner in transgenic tobacco seeds. Glycinin were targeted to vacuole-derived protein bodies in the endosperm tissue and highly accumulated in the matrix region of many transgenic plant (1-4% of total seed proteins). Synthesized glycinin was processed into mature form, and assembled into a hexamer in a similar manner as the glycinin in soybean seed. Modified glycinin, in which 4 contiguous methionine residues were inserted at the variable regions corresponding to the C - teminal regions of the acidic and basic polypeptides, were also found to be accumulated similarly as in the normal glycinin. There was no apparent difference in the expression level, processing and targeting to protein bodies, or accumulation level between normal and modified glycinin. glycinin.

  • PDF

Relationship between porcine miR-20a and its putative target low-density lipoprotein receptor based on dual luciferase reporter gene assays

  • Ding, Yueyun;Zhu, Shujiao;Wu, Chaodong;Qian, Li;Li, DengTao;Wang, Li;Wan, Yuanlang;Zhang, Wei;Yang, Min;Ding, Jian;Wu, Xudong;Zhang, Xiaodong;Gao, Yafei;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.922-929
    • /
    • 2019
  • Objective: Mutations in low-density lipoprotein receptor (LDLR), which encodes a critical protein for cholesterol homeostasis and lipid metabolism in mammals, are involved in cardiometabolic diseases, such as familial hypercholesterolemia in pigs. Whereas microRNAs (miRNAs) can control LDLR regulation, their involvement in circulating cholesterol and lipid levels with respect to cardiometabolic diseases in pigs is unclear. We aimed to identify and analyze LDLR as a potential target gene of SSC-miR-20a. Methods: Bioinformatic analysis predicted that porcine LDLR is a target of SSC-miR-20a. Wild-type and mutant LDLR 3'-untranslated region (UTR) fragments were generated by polymerase chain reaction (PCR) and cloned into the pGL3-Control vector to construct pGL3 Control LDLR wild-3'-UTR and pGL3 Control LDLR mutant-3'-UTR recombinant plasmids, respectively. An miR-20a expression plasmid was constructed by inserting the porcine premiR-20a-coding sequence between the HindIII and BamHI sites in pMR-mCherry, and constructs were confirmed by sequencing. HEK293T cells were co-transfected with the miR-20a expression or pMR-mCherry control plasmids and constructs harboring the corresponding 3'-UTR, and relative luciferase activity was determined. The relative expression levels of miR-20a and LDLR mRNA and their correlation in terms of expression levels in porcine liver tissue were analyzed using reverse-transcription quantitative PCR. Results: Gel electrophoresis and sequencing showed that target gene fragments were successfully cloned, and the three recombinant vectors were successfully constructed. Compared to pMR-mCherry, the miR-20a expression vector significantly inhibited wild-type LDLR3'-UTR-driven (p<0.01), but not mutant LDLR-3'-UTR-driven (p>0.05), luciferase reporter activity. Further, miR-20a and LDLR were expressed at relatively high levels in porcine liver tissues. Pearson correlation analysis revealed that porcine liver miR-20a and LDLR levels were significantly negatively correlated (r = -0.656, p<0.05). Conclusion: LDLR is a potential target of miR-20a, which might directly bind the LDLR 3'-UTR to post-transcriptionally inhibit expression. These results have implications in understanding the pathogenesis and progression of porcine cardiovascular diseases.