• Title/Summary/Keyword: ITS phylogeny

Search Result 288, Processing Time 0.021 seconds

The Complete Mitochondrial Genome and Molecular Phylogeny of the Flathead Platycephalus cultellatus Richardson, 1846 from Vietnam (Teleostei; Scorpaeniformes) (베트남 Platycephalus cultellatus Richardson, 1846 (Teleostei; Scorpaeniformes)의 전장 미토콘드리아 유전체와 분자계통)

  • Tran, Biet Thanh;Nguyen, Tu Van;Choi, Youn Hee;Kim, Keun-Yong;Heo, Jung Soo;Kim, Keun-Sik;Ryu, Jung-Hwa;Kim, Kyeong Mi;Yoon, Moongeun
    • Korean Journal of Ichthyology
    • /
    • v.33 no.4
    • /
    • pp.217-225
    • /
    • 2021
  • The family Platycephalidae is a taxonomic group of economically important demersal flathead fishes that predominantly occupy tropical or temperate estuaries and coastal environments of the Indo-Pacific oceans and the Mediterranean Sea. In this study, we for the first time analyzed the complete mitochondrial genome (mitogenome) of the flathead Platycephalus cultellatus Richardson, 1846 from Vietnam by Next Generation Sequencing method. Its mitogenome was 16,641 bp in total length, comprising 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes. The gene composition and order of the mitogenome were identical to those of typical vertebrates. The phylogenetic trees were reconstructed based on the concatenated nucleotide sequence matrix of 13 PCGs and the partial sequence of a DNA barcoding marker, cox1 in order to determine its molecular phylogenetic position among the order Scorpaeniformes. The phylogenetic result revealed that P. cultellatus formed a monophyletic group with species belonging to the same family and consistently clustered with one nominal species, P. indicus, and two Platycephalus sp. specimens. Besides, the cox1 tree confirmed the taxonomic validity of our specimen by forming a monophyletic clade with its conspecific specimens. The mitogenome of P. cultellatus analyzed in this study will contribute valuable information for further study on taxonomy and phylogeny of flatheads.

Phylogenetic Analysis of Phyllospadix iwatensis Based on Nucleotide Sequences Encoding 18S rRNA and ITS-1

  • Kim, Jong-Myoung;Choi, Chang-Geun
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.272-277
    • /
    • 2010
  • Seagrasses are marine angiosperms of ecological importance in providing shelter and food to aquatic species as well as maintaining the carbon cycle on earth. Phyllospadix iwatensis is a seagrass of the family Zosteraceae and is distributed along the eastern coast of Korea. The nucleotide sequences of P. iwatensis nuclear genes encoding 18S ribosomal RNA (rRNA) and internal transcribed spacer-1 (ITS-1) were determined for molecular phylogenetic analysis. Genomic DNA was isolated from P. iwatensis and used for PCR amplification of 18S rRNA and ITS-1. Examination of the 18S rRNA sequence of P. iwatensis showed a close (99% similarity) relationship to Zostera noltii, another genus of Zosteraceae, but a distant (84% similarity) evolutionary relationship to other macroalgal Laminariales species. Further discrepancies found in ITS-1 nucleotide sequences between closely related species indicate that the sequence information could be used for species identification.

Molecular Phylogeny and Divergence Time Estimation of the Soft Coral Dendronephthya gigantea (Alcyonacea: Nephtheidae)

  • Kim, Boa;Kong, So-Ra;Song, Jun-Im;Won, Yong-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • v.24 no.3
    • /
    • pp.327-332
    • /
    • 2008
  • Soft coral Dendronephthya gigantea (Verrill, 1864) is a conspicuous species dominating shallow sea waters of Jejudo Island, Korea. Recently its whole mitochondrial genome sequencing was completed by us and the sequence information provided an opportunity to test the age of Octocorallia and time of evolutionary separation between some representative orders of the subclass Octocorallia. Molecular phylogenetic analyses based on 13 mitochondrial protein encoding genes revealed a polyphyletic relationship among octocorallians representing two orders (Alcyonacea and Gorgonacea) and four families (Alcyoniidae, Nephtheidae, Briareidae, and Gorgoniidae). Estimates of divergence times among octocorallians indicate that the first splitting might occur around end of or after Cretaceous period (50-79 million years ago (Ma)). The age is relatively young compared to the long history of stony sea corals (>240 Ma). Taken together our result suggests a possible relatively recent radiating evolution at least in the order Alcyonacea and Gorgonacea. Molecular dating and phylogenetic analysis based on much broader taxon sampling and many genes might give an insight into this interesting hypothesis.

Sensitive, Accurate PCR Assays for Detecting Harmful Dinoflagellate Cochlodinium polykrikoides Using a Specific Oligonucleotide Primer Set

  • Kim Chang-Hoon;Park Gi-Hong;Kim Keun-Yong
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.122-129
    • /
    • 2004
  • Harmful Cochlodinium polykrikoides is a notorious harmful algal bloom (HAB) species that is causing mass mortality of farmed fish along the Korean coast with increasing frequency. We analyzed the sequence of the large subunit (LSD) rDNA D1-D3 region of C. polykrikoides and conducted phylogenetic analyses using Bayesian inference of phylogeny and the maximum likelihood method. The molecular phylogeny showed that C. polykrikoides had the genetic relationship to Amphidinium and Gymnodinium species supported only by the relatively high posterior probabilities of Bayesian inference. Based on the LSU rDNA sequence data of diverse dinoflagellate taxa, we designed the C. polykrikoides-specific PCR primer set, CPOLY01 and CPOLY02 and developed PCR detection assays for its sensitive, accurate HAB monitoring. CPOLY01 and CPOLY02 specifically amplified C. polykrikoides and did not cross-react with any dinoflagellates tested in this study or environmental water samples. The effective annealing temperature $(T_{p})$ of CPOLY01 and CPOLY02 was $67^{\circ}C$. At this temperature, the conventional and nested PCR assays were sensitive over a wide range of C. polykrikoides cell numbers with detection limits of 0.05 and 0.0001 cells/reaction, respectively.

Isolation and Molecular Phylogeny of Three Muscle Actin Isoforms of an Endangered Freshwater Fish Species Hemibarbus mylodon (Cypriniformes; Cyprinidae)

  • Kim, Keun-Yong;Nam, Yoon-Kwon
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.83-91
    • /
    • 2009
  • The Korean doty barbel Hemibarbus mylodon (Cypriniformes; Cyprinidae) is a critically endangered freshwater fish species mainly because of its natural habitat degradation. Three full-length complementary DNA (cDNA) clones representing different muscle actin isoforms were isolated and characterized. The three muscle actin isoforms were 1,294-1,601 bp long with the identical open reading frames of 1,134 bp with the deduced amino acid residues of 377. They showed 83.9-87.2% identities in the coding nucleotide level and 96.8-98.1% identities in the amino acid level. Phylogenetic analysis with the coding nucleotide sequences revealed that three muscle actin isoforms of H. mylodon formed strongly supported monophyletic groups with one of cypriniform skeletal $\alpha$-actin (acta1), cypriniform aortic $\alpha$-actins (acta2), and uncharacterized Danio rerio muscle actin isoform/Salmo trutta slow muscle actin (a novel muscle actin type). Our phylogenetic tree further suggested that cypriniform acta2 only showed the orthologous relationship to tetrapod acta2. Other multiple actin isoforms from diverse teleostean taxa were however clustered to no tetrapod orthologs, i.e., acta1, cardiac $\alpha$-actins (aetc1), acta2, and enteric $\gamma$-actin (actg2). This result strongly suggested that teleostean muscle actins have experienced different and complicated evolutionary history in comparison to mammalian counterparts.

Two New Species in the Family Cunninghamellaceae from China

  • Zhao, Heng;Zhu, Jing;Zong, Tong-Kai;Liu, Xiao-Ling;Ren, Li-Ying;Lin, Qing;Qiao, Min;Nie, Yong;Zhang, Zhi-Dong;Liu, Xiao-Yong
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.142-150
    • /
    • 2021
  • The species within the family Cunninghamellaceae are widely distributed and produce important metabolites. Morphological studies along with a molecular phylogeny based on the internal transcribed spacer (ITS) and large subunit (LSU) of ribosomal DNA revealed two new species in this family from soils in China, that is, Absidia ovalispora sp. nov. and Cunninghamella globospora sp. nov. The former is phylogenetically closely related to Absidia koreana, but morphologically differs in sporangiospores, sporangia, sporangiophores, columellae, collars, and rhizoids. The latter is phylogenetically closely related to Cunninghamella intermedia, but morphologically differs in sporangiola and colonies. They were described and illustrated.

Occurrence and Molecular Identification of Microcotyle sebastis Isolated from Fish Farms of the Korean Rockfish, Sebastes schlegelii

  • Song, Jun-Young;Kim, Keun-Yong;Choi, Seo-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.1
    • /
    • pp.89-95
    • /
    • 2021
  • Microcotyle sebastis is a gill monogenean ectoparasite that causes serious problems in the mariculture of the Korean rockfish, Sebastes schlegelii. In this study, we isolated the parasite from fish farms along the coasts of Tongyeong, South Korea in 2016, and characterized its infection, morphology and molecular phylogeny. The prevalence of M. sebastis infection during the study period ranged from 46.7% to 96.7%, and the mean intensity was 2.3 to 31.4 ind./fish, indicating that the fish was constantly exposed to parasitic infections throughout the year. Morphological observations under light and scanning electron microscopes of the M. sebastis isolates in this study showed the typical characteristics of the anterior prohaptor and posterior opisthaptor of monogenean parasites. In phylogenetic trees reconstructed using the nuclear 28S ribosomal RNA gene and the mitochondrial cytochrome c oxidase I gene (cox1), they consistently clustered together with their congeneric species, and showed the closest phylogenetic relationships to M. caudata and M. kasago in the cox1 tree.

Biodiversity and Enzyme Activity of Marine Fungi with 28 New Records from the Tropical Coastal Ecosystems in Vietnam

  • Pham, Thu Thuy;Dinh, Khuong V.;Nguyen, Van Duy
    • Mycobiology
    • /
    • v.49 no.6
    • /
    • pp.559-581
    • /
    • 2021
  • The coastal marine ecosystems of Vietnam are one of the global biodiversity hotspots, but the biodiversity of marine fungi is not well known. To fill this major gap of knowledge, we assessed the genetic diversity (ITS sequence) of 75 fungal strains isolated from 11 surface coastal marine and deeper waters in Nha Trang Bay and Van Phong Bay using a culture-dependent approach and 5 OTUs (Operational Taxonomic Units) of fungi in three representative sampling sites using next-generation sequencing. The results from both approaches shared similar fungal taxonomy to the most abundant phylum (Ascomycota), genera (Candida and Aspergillus) and species (Candida blankii) but were different at less common taxa. Culturable fungal strains in this study belong to 3 phyla, 5 subdivisions, 7 classes, 12 orders, 17 families, 22 genera and at least 40 species, of which 29 species have been identified and several species are likely novel. Among identified species, 12 and 28 are new records in global and Vietnamese marine areas, respectively. The analysis of enzyme activity and the checklist of trophic mode and guild assignment provided valuable additional biological information and suggested the ecological function of planktonic fungi in the marine food web. This is the largest dataset of marine fungal biodiversity on morphology, phylogeny and enzyme activity in the tropical coastal ecosystems of Vietnam and Southeast Asia. Biogeographic aspects, ecological factors and human impact may structure mycoplankton communities in such aquatic habitats.

Mitrula aurea sp. nov., A New Aero-Aquatic Species from the Republic of Korea

  • Sung-Eun Cho;Hyung So Kim;Young-Nam Kwag;Dong-Hyeon Lee;Jae-Gu Han;Chang Sun Kim
    • Mycobiology
    • /
    • v.50 no.4
    • /
    • pp.213-218
    • /
    • 2022
  • The genus Mitrula (Mitrulaceae, Helotiales), as also known as swamp beacons, inhabits submerged, decaying vegetation in standing or decaying needles, twigs, leaves, and shallow water. They play an important role in carbon cycling in some freshwater ecosystems. In the herbarium of the Korea National Arboretum (KH), seven Mitrula specimens were collected during mushroom forays in the period from 2019 to 2021. The Korean collections were found to be macromorphologically closely related to M. paludosa and M. elegans, but micro-morphologically they could be distinguished by characteristics of slightly narrower asci and aseptate ascospores. Our molecular phylogenetic analyses of the internal transcribed spacer (ITS) and 28S rDNA regions also revealed that our specimens were related to M. paludosa and M. elegans, but formed a distinct clade. Based on these results, we reported our specimens as new to science and discussed the phylogeny and diversity of Mitrula species.