• 제목/요약/키워드: ITO (indium tin oxide)

검색결과 837건 처리시간 0.032초

Size-homogeneous gold nanoparticle decorated on graphene via MeV electron beam irradiation

  • Kim, Yoo-Seok;Song, Woo-Seok;Jeon, Cheol-Ho;Kim, Sung-Hwan;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.487-487
    • /
    • 2011
  • Recently graphene has emerged as a fascinating 2D system in condensed-matter physics as well as a new material for the development of nanotechnology. The unusual electronic band structure of graphene allows it to exhibit a strong ambipolar electric field effect with high mobility. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85 % transmittance in the visible range (400?900 nm), the CVD-grown graphene electrodes have a higher/flatter transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition, for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10 ~ 15 nm in mean size were decorated along the surface of the graphene after 1.5 MeV-e-beam irradiation. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

은 도핑 효과를 이용한 그래핀 투명 전도성 필름의 전기적 특성 향상

  • 정상희;이수일;김유석;송우석;김성환;차명준;박상은;민경임;박종윤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.566-566
    • /
    • 2012
  • 그래핀(Graphene)은 모든 탄소 동소체의 기본구성 요소로 2 차원 결정구조를 가지며, 양자홀 효과(quantum Hall effect), 뛰어난 열 전도도, 고 탄성, 광학적 투과성 등과 같은 탁월한 물리적 성질을 보이는 물질이다. 이러한 그래핀의 우수한 특성은 전계 효과 트랜지스터(field effect transistor), 화학/바이오 센서, 투명 전극(transparent electrode) 등의 다양한 전자소자를 개발하는 응용 가능하다. 그 중, 그래핀 투명전극의 제조는 가장 응용가능성이 높은 분야이다. 현재 투명전극 물질로는 인듐-주석 산화물(indium tin oxide; ITO)가 널리 이용되고 있으나, 인듐의 고갈로 인한 공급부족 문제 및 고 생산비용, 휘어지지 않는 취성 등의 단점을 지니고 있다. 따라서, 우수한 광학적 투과성과 전기전도성을 지닌 그래핀이 ITO의 대체 물질로서 각광받고 있다.[1-5] 본 연구에서는 그래핀의 투명전도필름의 응용을 위해 면저항을 낮추기 위한 방법으로 화학적 도핑(doping)을 이용하였다. 그래핀은 구리(copper; Cu) 호일을 촉매로 사용하여 열 화학증착법(Thermal Chemical Vapor Deposition)을 이용하여 합성하였다. 합성된 그래핀은 PMMA(Poly(methyl methacrylate)) 전사법을 이용하여 산화실리콘(SiO2) 기판에 전사 후, 염화은(AgCl)과 클로로벤젠(C6H5Cl)으로 만든 콜로이드(colloid) 용액에 디핑(dipping)하여 그래핀에 은 입자를 도핑 하였다. 그 결과, 은 입자 도핑 농도에 따라 면저항이 감소하는 양상을 보였다. 제작된 그래핀 투명전도성 필름의 투과도는 자외선-가시광선-근적외선 분광법(UV-Vis-NIR spectroscopy)를 이용하여 측정하였고, 라만 분광법(Raman spectroscopy)을 통해 그래핀 필름의 질적 우수성과 성장 균일도를 조사하였다.

  • PDF

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

가스 유량과 RF Power에 따라 PECVD 방법으로 증착된 DLC 박막의 특성 (Characteristics of Diamond Like Carbon Thin Film Deposited by Plasma Enhanced Chemical Vapor Deposition Method with Gas Flow Rate and Radio Frequency Power)

  • 정선영;김현기;주성후
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.88-88
    • /
    • 2018
  • DLC(Diamond Like Carbon) 박막은 높은 열전도도, 큰 전기저항, 높은 강도 등의 다이아몬드와 유사한 특성을 가지고 있으면서 저온 저압에서도 합성이 가능하고, 합성 조건에 따라 물리 화학적 특성도 넓게 조절 할 수 있으며 상대적으로 넓은 면적에서 균일하고 평활한 박막의 합성이 가능하여 산업적 응용 면에서도 경쟁력을 갖추고 있다[1]. 이러한 DLC 박막을 합성함에 있어서 RF-PECVD(Radio Frequency Plasma Enhanced Chemical Vapor Deposition) 방법은 PECVD 방법 중 가장 보편적으로 사용되고 또 캐패시터 타입의 RF-PECVD 방법은 균일한 대면적 증착과 대량생산이 가능하다[1,2]. 본 연구에서는 우수한 특성을 갖는 DLC 박막의 증착 조건을 찾기 위해 캐패시터 타입의 RF-PECVD를 사용하여 공정 가스의 유량과 RF Power를 변화하여 박막을 증착하고, 증착된 박막의 특성을 연구하였다. DLC 박막은 ITO(Indium Tin Oxide) 유리 기판 위에 $100^{\circ}C$에서 5 min 동안 아세틸렌($C_2H_2$) 가스를 사용하여 가스 유량과 RF Power를 변화하여 증착하였다. 증착된 DLC 박막의 특성은 투과도, 평탄도, 두께를 측정하여 비교하였다. 가시광선 영역(380-780 nm)에서 투과도를 측정한 결과 ITO 유리 기판을 기준으로 한 DLC 박막의 투과도는 가시광선 영역 평균 94.8~98.8% 사이의 값으로 매우 높은 투과율을 나타내었다. 투과도는 가스 유량이 증가함에 따라 증가하는 경향을 나타내었고, RF Power의 변화에는 특정한 변화를 나타내지 않았다. 박막의 평탄도($R_a$, $R_{rms}$)와 두께는 AFM(Atomic Force Microscope)을 사용하여 측정하였다. 평탄도 $R_{rms}$는 0.8~3.3 nm, $R_a$는 0.6~2.5 nm 사이를 나타내었고 RF Power와 가스 유량의 변화에 따른 경향성을 나타내지는 않았다. 두께는 RF Power 25 W에서 55 W로 증가함에 따라 증가하는 경향을 나타내었으나 70W에서는 가스의 유량에 따라 상이한 결과를 나타내었다.

  • PDF

나노크기 표면 요철을 이용한 GaN LED의 광추출효율 향상 (Enhancement of Light Extraction Efficiency of GaN Light Emitting Diodes Using Nanoscale Surface Corrugation)

  • 정재우;김사라;정준호;정종율
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.636-641
    • /
    • 2012
  • In this study, we have investigated highly efficient nanoscale surface corrugated light emitting diodes (LEDs) for the enhancement of light extraction efficiency (LEE) of nitride semiconductor LEDs. Nanoscale indium tin oxide (ITO) surface corrugations are fabricated by using the conformal nanoimprint technique; it was possible to observe an enhancement of LEE for the ITO surface corrugated LEDs. By incorporating this novel method, we determined that the total output power of the surface corrugated LEDs were enhanced by 45.6% for patterned sapphire substrate LEDs and by 41.9% for flat c-plane substrate LEDs. The enhancement of LEE through nanoscale surface corrugations was studied using 3-dimensional Finite Different Time Domain (FDTD) calculation. From the FDTD calculations, we were able to separate the light extraction from the top and bottom sides of device. This process revealed that light extraction from the top and bottom sides of a device strongly depends on the substrate and the surface corrugation. We found that enhanced LEE could be understood through the mechanism of enhanced light transmission due to refractive index matching and the increase of light scattering from the corrugated surface. LEE calculations for the encapsulated LEDs devices also revealed that low LEE enhancement is expected after encapsulation due to the reduction of the refractive index contrast.

TMP-BiP 호스트와 DJNBD-1 도펀트를 이용한 청색 OLED의 제작과 특성평가 (Fabrication and Characterization of Blue OLED using TMP-BiP Host and DJNBD-1 Dopant)

  • 장지근;안종명;신상배;장호정;공수철;신현관;공명선;이칠원
    • 반도체디스플레이기술학회지
    • /
    • 제6권2호
    • /
    • pp.19-23
    • /
    • 2007
  • The blue emitting OLEDs using TMP-BiP[(4'-Benzoylferphenyl-4-yl)phenyl-methanone-Diethyl(biphenyl-4-ymethyl) phosphonate] host and DJNBD-1 dopant have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium tin oxide)/glass substrate by vacuum thermal evaporation method. Followed by the deposition, blue color emission layer was deposited using TMP-BiP as a host material and DJNBD-1 as a dopant. Finally, small molecule OLEDs with structure of $ITO/2-TNATA/NPB/TMP-BiP:DJNBD-l/Alq_3/LiF/Al$ were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. The effect of dopant into host material of the blue OLEDs was studied. The blue OLEDs with DJNBD-1 dopant showed that the maximum current and luminance were found to be about 34 mA and $8110\;cd/m^2$ at 11 V, respectively. In addition, the color coordinate was x=0.17, y=0.17 in CIE color chart, and the peak emission wavelength was 440 nm. The maximum current efficiency of 2.15 cd/A at 7 V was obtained in this experiment.

  • PDF

비접촉 눈 깜박임 측정 안경형 디바이스를 이용한 실시간 스펠러의 구현 (Development of Online Speller using Non-contact Blink Detection Glasses)

  • 이정수;이홍지;이원규;임용규;박광석
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권6호
    • /
    • pp.283-290
    • /
    • 2015
  • We proposed blink based online speller for the locked-in syndrome (LIS) patients, paralyzed in nearly all voluntary muscles expect for the eyes, with a simple and easy-to-use eye blink detection glasses. Electrooculogram (EOG) is the golden standard method of eye movement or blink measurement with Ag/AgCl electrodes. However, this method has several drawbacks such as skin irritation and dehydration of conductive gel. To resolve the shortcomings, we used a blink detection system based on a transparent capacitively coupled electrode, which is conductive indium tin oxide (ITO) films. The films make it possible to measure eye blink without direct skin contact and obstruction of field of view. We finally developed user-friendly blink based online speller with the blink detection system. To classify voluntary and non-voluntary blink, we used the double blink for command of the speller. The online speller experiment result with six healthy subjects shows that mean accuracy is 98.96% and letter per minute (LPM) is 4.73, which are better result by comparison with conventional P300 or auditory brain-computer interface (BCI) paradigm. The result of the experiment demonstrates the possibility of applying the proposed system as a communication method for the LIS patients.

지방산과 인지질 혼합 LB막의 전기화학적 특성 (The Electrochemical Characterization of Mixture LB Films of Fatty Acid and Phospholipids)

  • 손태철;김남석;박근호
    • 한국응용과학기술학회지
    • /
    • 제20권2호
    • /
    • pp.94-100
    • /
    • 2003
  • We studied electrochemical characteristics of Langmuir-Blodgett(LB) films by using cyclic voltammetry with a three-electrode system. An Ag/AgCl as a reference electrode, a platinum wire as a counter electrode and LB film-coated indium tin oxide(ITO) as a working electrode were used to study electrochemical characteristics at a various concentration of $NaClO_4$ solution. LB films were reduced from initial potential to -1350 mV, continuously oxidized to l650mV and returned to the initial point. The scan rate was l00mV/s. The monolayer surface morphology of the LB film have been measured by Atomic Force Microscope(AFM). As a result, We comfirmed that the microscopic properties of LB film by AFM showed the good orientation of momolayer molecules and the thickness of monolayer was 3.5-4.lnm. The cyclic voltammograms(CV) of the ITO-coated glass showed the peak potentials for the reduction-oxidation reation. LB films of 4-octyl-4'-(5-carboxypentamethyleneoxy) azobenzene(8A5H) / L-${\alpha}$-phosphayidyl choline, dilauroyl(DLPC) seemed to be irreversible process caused by only the oxidation current from the cyclic voltammogram. The current of oxidatation increased at cyclic voltammogram by increasing 8A5H density in LB films. The diffusivity(D) of LB films increased with increasing of a 8A5H amount and was inversely proportional to the concentration of $NaClO_4$ solution.

Screen Printing법에 의한 Video Phone Tube용 형광막 제조 (The Preparation of Phosphor Screen for Video Phone Tube by Screen Printing Method)

  • 이미영;이종욱;김영배;남수용;이상남;문명준
    • 한국환경과학회지
    • /
    • 제14권8호
    • /
    • pp.801-810
    • /
    • 2005
  • The phosphor and ITO(Indium Tin Oxide) films for video phone tube (VPT) were simply prepared by the screen printing and thermal transfer methods. The increasing order of thermal firing of acrylic binder for phosphor and ITO was M6003 < M6664 < A/A 1919 < M500l < M670 1 and all mass of binders were perfectly decomposed at lower temperature than $400^{\circ}C.$ After thermal firing of phosphor paste, the residual of binder on the surface of phosphor could not be found by SEM. Aerosil as thickner provides the thixotropy property for phosphor paste but decrease the brightness of phosphor screen as residual after thermal firing. Since the thixotropy of M5001 binder without aerosil was shown and the storage modulus of phosphor paste by increasing the angular frequency was not nearly changed and the decrease of the storage modulus of phosphor paste by increasing the strain was remarkably shown. It was possible to prepare the phosphor paste which was predominant in the plate separation and the reproduction of pattern after the screen printing. Since the addition of dispersing agent to improve the printing process decreases the electrical conductivity and light transmission of ITa film, it could be found to be necessary the development of binder for phosphor paste that decreases the amount of dispersing agent possibly and does not use the aerosil as additive.

PFO : MEH-PPV 발광층과 정공 차단층을 이용한 고분자 발광다이오드의 특성 (Properties of Polymer Light Emitting Diodes Using PFO : MEH-PPV Emission Layer and Hole Blocking Layer)

  • 이학민;공수철;신상배;박형호;전형탁;장호정
    • 반도체디스플레이기술학회지
    • /
    • 제7권2호
    • /
    • pp.49-53
    • /
    • 2008
  • The yellow base polymer light emitting diodes(PLEDs) with double emission and hole blocking layers were prepared to improve the light efficiency. ITO(indium tin oxide) and PEDOT : PSS[poly(3,4-ethylenedioxythiophene) : poly(styrene sulfolnate)] were used as cathode and hole transport materials. The PFO[poly(9,9-dioctylfluorene)] and MEH-PPV[poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and guest materials, respectively. TPBI[Tpbi1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene] was used as hole blocking layer. To investigate the optimization of device structure, we prepared four kinds of PLED devices with different structures such as single emission layer(PFO : MEH-PPV), two double emission layer(PFO/PFO : MEH-PPV, PFO : MEH-PPV/PFO) and double emission layer with hole blocking layer(PFO/PFO : MEH-PPV/TPBI). The electrical and optical properties of prepared devices were compared. The prepared PLED showed yellow emission color with CIE color coordinates of x = 0.48, y = 0.48 at the applied voltage of 14V. The maximum luminance and current density were found to be about 3920 cd/$m^2$ and 130 mA/$cm^2$ at 14V, respectively for the PLED device with the structure of ITO/PEDOT : PSS/PFO/PFO : MEH-PPV/TPBI/LiF/Al.

  • PDF