• Title/Summary/Keyword: ITO/metal/ITO

Search Result 228, Processing Time 0.028 seconds

Discharge Characteristics of Facing Targets Sputtering Apparatus with Targets Species (타켓 종류에 따른 대향타겟 스퍼터링 장치의 방전 특성)

  • Keum, Min-Jong;Son, In-Hwan;Shin, Sung-Kwan;Ga, Ch-Hyun;Park, Yong-Seo;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.620-623
    • /
    • 2004
  • In this study, the discharge characteristic of FTS (Facing Targets Sputtering) apparatus was investigated using metal target paramagnetic and ceramic targets such as Zn, Al, $ZnO:Al(Al_2O_3)$, ITO. Threshold voltage and stable stage of discharge show different with target species. Compare with commercial sputtering apparatus, the FTS apparatus is a high-speed sputter method that promotes ionization of sputter gas by screw and reciprocate moving high-speed ${\gamma}$electrons which arrays two targets facing each other, inserts plasma arresting magnetic field to the parallel direction of the center axis of both targets, discharged from targets and accelerated at the cathode falling area. Especially, we notice that the FTS method using ceramic target has stable discharge characteristic even by DC power source.

  • PDF

Electronic Structure of Organic/organic Interface Depending on Heteroepitaxial Growth Using Templating Layer

  • Lim, Hee Seon;Kim, Sehun;Kim, Jeong Won
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.351-356
    • /
    • 2014
  • The electronic structure at organic-organic interface gives essential information on device performance such as charge transport and mobility. Especially, the molecular orientation of organic material can affect the electronic structure at interface and ultimately the device performance in organic photovoltaics. The molecular orientation is examined by the change in ionization potential (IP) for metal phthalocyanines (MPc, M=Zn, Cu)/fullerene ($C_{60}$) interfaces on ITO by adding the CuI templating layer through ultraviolet photoelectron spectroscopy measurement. On CuPc/$C_{60}$ bilayer, the addition of CuI templating layer represents the noticeable change in IP, while it hardly affects the electronic structure of ZnPc/$C_{60}$ bilayer. The CuPc molecules on CuI represent relatively lying down orientation with intermolecular ${\pi}-{\pi}$ overlap being aligned in vertical direction. Consequently, in organic photovoltaics consisting of CuPc and $C_{60}$ as donor and acceptor, respectively, the carrier transport along the direction is enhanced by the insertion of CuI templaing layer. In addition, optical absorption in CuPc molecules is increased due to aligned transition matrix elements. Overall the lying down orientation of CuPc on CuI will improve photovoltaic efficiency.

Fabrication of Organic Electroluminescent Device and electro-optical properties using metal-chelates($Snq_2,Snq_4$) for Emitting Material Layer (금속-킬레이트계($Snq_2,Snq_4$) 발광층을 이용한 유기 전기 발광 소자의 제작과 전기.광학적 특성)

  • Yoon, H.C.;Yoo, J.H.;Kim, B.S.;Kim, J.K.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1575-1577
    • /
    • 2002
  • In this study, multi layer type OLED(Organic Light Emitting Diode) has been fabricated using $Snq_2$, $Snq_4$, and $Alq_3$ for development of high efficiency, electrical and optical properties of multi layer type OLED investigated. The HTL(Hole Transfer Layer) and EML(Emitting Material Layer) were fabricated by using vacuum evaporation on ITO electrode, and its thickness controlled using thickness monitor. Al was used as a cathode. The electrical and optical properties such as J-V, brightness-V and EL spectrum of OLED device was measured using I.V.L.T system. The result, brightness of $Alq_3$, $Snq_2$ and $Snq_4$ were $3900cd/m^2$, $63cd/m^2$ and $23cd/m^2$ respectively.

  • PDF

Synthesis characterization of Ni-Cr nanofibers via electrospinning method (전기방사를 통한 Ni-Cr 나노 섬유 합성 및 특성분석)

  • Lee, Jeong-Hun;Won, Mi-So;Lee, Gyu-Hwan;Choe, Seung-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.168.2-168.2
    • /
    • 2017
  • 발열체는 전기 에너지를 열 에너지로 변환시키는 전기 저항체인데, Ni-Cr계 합금이 발열 가능 온도가 범위가 크고 열 효율 및 내 산화성, 내 부식성이 우수하여 발열체로 많이 사용되고 있다. 그리고 기존의 선형 발열체의 효율성을 개선한 면상 발열체가 개발되었고, 최근 나노 기술의 발달로 나노크기의 ITO(Indium Tin Oxide) 입자나 탄소나노튜브가 코팅된 형태의 투명 면상 발열체가 개발되어 주목을 받고 있다. 투명 면상 발열체는 발열체의 형태를 거시적으로 확인할 수 없기 때문에 자동차의 전면 유리 히터 및 건축용 기능성 창호 등의 심미적 효과를 요구하는 제품에 사용될 수 있다. 본 연구에서는 PVP(Poly vinyl Pirrolidone)을 이용하여 Ni-Cr Nanofiber 제조를 위한 효율적인 전기 방사 조건을 도출한다. PVP 질량에 따라서 Ethanol과 Methanol, 물을 이용하여 viscosity와 ion conduciviy를 조절하였고, 전기방사 조건으로 bead를 최소화 하는 나노섬유를 얻었다. 이어서 Ni-Cr/PVP 용액은 Metal Precursor wt.% 조절 및 방사조건으로 100~300nm의 직경을 가진 나노 섬유를 얻을 수 있었다. 산화/환원 열처리 후 PVP와 Oxide가 제거된 Ni-Cr nanofiber를 합성하였다. Nanofiber 형상은 FE-SEM으로 측정하였으며, XRD, FT-IR 분석을 통해 제작된 나노 섬유의 구조적 특성을 확인하였다.

  • PDF

Surface Potential Change Depending on Molecular Orientation of Hexadecanethiol Self-Assembled Monolayers on Au(111)

  • Ito, Eisuke;Arai, Takayuki;Hara, Masahiko;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1309-1312
    • /
    • 2009
  • Surface potential and growth processes of hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) surfaces were examined by Kelvin probe method and scanning tunneling microscopy. It was found that surface potential strongly depends on surface structure of HDT SAMs. The surface potential shift for the striped phase of HDT SAMs chemisorbed on Au(111) surface was +0.45 eV, which was nearly the same as that of the flat-lying hexadecane layer physisorbed on Au(111) surface. This result indicates that the interfacial dipole layer induced by adsorption of alkyl chains is a main contributor to the surface potential change. In the densely-packed HDT monolayer, further change of the surface potential was observed, suggesting that the dipole moment of the alkanethiol molecules is an origin of the surface potential change. These results indicate that the work function of a metal electrode can be modified by controlling the molecular orientation of an adsorbed molecule.

Properties of the Exciton Blocking Layer in Organic Photovoltaic cell (유기 광기전력 소자의 엑시톤 억제층 특성)

  • Oh, Hyun-Seok;Lee, Ho-Shik;Park, Yong-Phil;Lee, Won-Jae;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.20-21
    • /
    • 2008
  • Photovoltaic effects in organic solar cell were studied in a cell configuration of ITO/PEDOT:PSS/CuPd(20nm)/$C_{60}$(40nm)/BCP/Al(150nm) at room temperature. Here, the BCP layer works as an exciton blocking layer. The exciton blocking layer must transport electrons from the acceptor layer to the metal cathode with minimal increase in the total cell series resistance and should absorb damage during cathode deposition. Therefore, a proper thickness of the exciton blocking layer is required for an optimized photovoltaic cell. Several thicknesses of BCP were made between $C_{60}$ and Al. And we obtained characteristic parameters such as short-circuit current, open-circuit voltage, and power conversion efficiency of the device under the illumination of AM 1.5.

  • PDF

Energy Level Alignment between Hole Injecting HAT-CN and Metals and Organics: UPS and ab-initio Calculations

  • Kang, H.;Kim, J.H.;Kim, J.K.;Kwon, Y.K.;Kim, J.W.;Park, Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.108-111
    • /
    • 2009
  • We have determined the electronic energy level alignment at the interface between 4,4'-bis-N-phenyl-1-naphthylamino biphenyl (NPB) and 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT-CN) using ultraviolet photoelectron spectroscopy (UPS). The highest occupied molecular orbital (HOMO) of 20 nm thick HAT-CN film was located at 3.8 eV below the Fermi level. Thus the lowest unoccupied molecular orbital (LUMO) is very close to the Fermi level. The HOMO position of NPB was only about 0.3 eV below Fermi level at NPB/HAT-CN interface. This enables an easy excitation of electrons from the NPB HOMO to the HAT-CN LUMO, creating electron-hole pairs across this organic-organic interface. We also study the interaction of HAT-CN with a few metallic surfaces including Ca, Cu, and ITO using UPS and ab-inito electronic structure calculation techniques.

  • PDF

Luminance Properties of Organic Light Emitting Diodes Using Zn-Complexes (Zn-Complexes를 이용한 OLEDs의 발광 특성 연구)

  • Jang, Yoon-Ki;Kim, Doo-Seok;Kim, Byoung-Sang;Kwon, Oh-Kwan;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1890-1892
    • /
    • 2005
  • Recently, high luminance and high efficiency were realized in OLEDs with multilayer structure including emitting materials such as metal-chelate complexes. New luminescent materials, [2- (2-hydroxyphenyl)-quinoline] (Zn(HPB)q), [(1,10-phenanthroline)- (8-hydroxyquinoline)] Zn(Phen)q was synthesized. Zn-Complexes have low molecular compound and thermal stability. The ionization potential(IP) and electron affinity(EA) of Zn-complexes were measured by cyclic-voltammetry(CV). The fundamental structure of the OLEDs was $ITO/{\alpha}$-NPD/Zn-Complex/Al and then we made device structure rightly in energy band gap. We using Zn(Phen)q as emitting layer and Zn(HPB)q as electron transport layer. We measured current density-voltage, luminance-voltage characteristics.

  • PDF

Built-in voltage depending on $Li_2O$ layer thickness in organic light-emitting diodes from the measurement of modulated photocurrent (변조 광전류 측정법을 이용하여 유기 발광 소자에서 $Li_2O$ 두께 변화에 따른 내장 전압)

  • Lee, Eun-Hye;Yoon, Hee-Myoung;Kim, Tae-Wan;Min, Hang-Gi;Jang, Kyung-Uk;Chung, Dong-Hoe;Oh, Yong-Cheul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.31-32
    • /
    • 2007
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. An ITO was used as an anode, and $Li_2O$/Al was used as a cathode. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photocurrent is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. It was found that for 0.5nm thick $Li_2O$ layer built-in voltage is the higher than the others. It indicates that a very thin alkaline metal compound $Li_2O$ lowers an electron barrier height.

  • PDF

White-Light-Emitting Materials for Organic Electroluminescent Devices

  • Kim, Duck-Young;Kwon, Oh-Kwan;Kwon, Hyuck-Joo;Kim, Young-Kwan;Sohn, Byoung-Chung;Ha, Yun-Kyoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • White emission is important for applying organic EL devices to full-color flat panel display and backlight for liquid crystal display. In order to obtain white emission, the use of a light-emitting material which shows the white emission by itself is advantageous for these applications because of its high reliability and productivity. A chelate-metal complex such as zinc bis(2-(2-hydroxyphenyl) benzothiazolate) ($Zn(BTZ)_{2}$ was known to emit white light with a broad electroluminescence. In this study, the electroluminescent characteristics of $Be(BTZ)_{2}$ and $Mg(BTZ)_{2}$, as well as $Zn(BTS)_2$ were investigated using organic electroluminescent devices with the structure of ITO/TPD/ $Be(BTZ)_{2}$, $Mg(BTZ)_{2}$, or $Zn(BTZ)_{2}/Al$. It was found that the device containing $Be(BTZ)_{2}$ showed the highest power efficiency.