• Title/Summary/Keyword: ITO/CNT nano composite

Search Result 2, Processing Time 0.017 seconds

ITO/CNT Nano Composites as a Counter Electrode for the Dye-Sensitized Solar Cell Applications (ITO/CNT 나노 복합체의 염료감응형 태양전지의 이용)

  • Park, Jong-Hyun;Pammi, S.V.N;Jung, Hyun-June;Cho, Tae-Yeon;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.76-80
    • /
    • 2011
  • The ITO/Cabon Nano Tube (CNT) nano composites were deposited by nano cluster deposition (ITO) and arc discharge deposition (CNT) on glass substrates. The structural, optical and photovoltaic performance of ITO/CNT nano composites as a counter electrode of dye-sensitized solar-cells (DSSCs) such films were investigated. At low temperature below $250^{\circ}C$, the ITO films deposited on CNT. The ITO/CNT nano composit showed a good optical and electrical property for the counter electrode of DSSCs. When the as-prepared ITO/CNT nano composites are used for the counter electrodes, the photovoltaic parameters are $V_{OC}$ = 0.69 V, $J_{SC}$ = 5.69 mA/$cm^2$, FF = 0.32, and $\eta$ = 0.53 %. The ITO/CNT nano composites showed the possibility for the counter electrode applications of DSSCs.

Indium tin oxide - Carbon nanotubes nano composite electrodes using by nano cluster deposition for dye sensitized solar cell applications (나노 클러스터 증착법을 이용한 ITO-CNT 복합체의 염료감응형 태양전지의 이용)

  • Park, Jong-Hyun;Pammi, S.V.N.;Jung, Hyun-June;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.69-69
    • /
    • 2010
  • Carbon nano tubes (CNTs) have been attractive candidates for fundamental research studies due to their outstanding physical and chemical properties. High thermal and chemical stability and large surface area make CNTs an ideal platform for many nano materials systems. Several applications such as Several applications were proposed for CNTs many of which are concerned with conductive or high strength composites make them excellent candidates for a variety of energy conversion and storage technologies.

  • PDF