• Title/Summary/Keyword: ITCZ

Search Result 13, Processing Time 0.009 seconds

Paleo-latitude of the Intertropical Convergence Zone in the Northeast Pacific during Late Cenozoic (신생대 후기 북동태평양 지역 적도수렴대의 위치변화)

  • Hyeong, Ki-Seong;Kim, Ki-Hyune;Chi, Sang-Bum;Yoo, Chan-Min
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.245-253
    • /
    • 2004
  • The Intertropical Convergence Zone (ITCZ), where the southeast and northeast trade winds converge, is the effective climatological barrier that separates the southern and northern hemispheres in dust budget. Asian and N. American dusts dominate in fhe Pacific north of the ITCZ, while Central and S. American dust prevails south of the ITCZ. In order to understand the nature of latitudinal and depth-related variations of mineral composition in terms of relative position to the ITCZ, deep-sea core sediments were collected from $9^{\circ}N$ to $17^{\circ}N$ at a $2^{\circ}N$ interval along the $131.5^{\circ}W$ meridian and analyzed for mineral composition. The amount of illite in surface sediments decreases gradually from 65% at $17^{\circ}N\;to\;31^{\circ}N$ to 31% at 9f. In contrast, smectite increases from 11% to 56% southward. The observed mineralogical variation toward the ITCZ is attributed to the increased supply of volcaniclastic material transported via the southeast trade winds from the Central and South America source regions. Smectite-illite transition, a phenomenon that the amount of smectite increases over illite, occurs at around $10^{\circ}N$, the northern margin of the ITCZ. This result indicates that the change in latitudinal position of the ITCZ in geologic past could be recorded as a form of smectite-illite transition in deep-sea cores. The studied cores show down-core variation of mineral composition from illite-rich at the surface to smectite-rich clay suit at depths, similar to the latitudinal variation. The smectite-illite transitions observed in these cores are likely the records of changes in latitudinal position of the ITCZ. The depth and age of smectite-illite transition is getting shallower and younger toward equator, implying that the ITCZ was located farther north during late Tertiary and has shifted southward to the present position of $5^{\circ}N-10^{\circ}N$.

Seasonal Variation of Planktonic Foraminifera Assemblage in response to Seasonal Shift of Inter-Tropical Convergence Zone in the Northeastern Equatorial Pacific (적도수렴대의 위치변화에 따른 북동태평양 적도해역의 부유성 유공충 군집의 계절변동)

  • Lee, Yuri;Asahi, Hirofumi;Woo, Han Jun;Kim, Hyung Jeek;Lee, Seong-Joo;Khim, Boo-Keun
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.437-445
    • /
    • 2014
  • A time-series sediment trap was operated at a water depth of 4950 m from July 2003 to May 2004 at KOMO station ($10^{\circ}30^{\prime}N$, $131^{\circ}20^{\prime}W$) in the northeastern equatorial Pacific, with the aim of understanding the temporal variation of planktonic foraminifera assemblages in response to the seasonal shift of Inter-Tropical Convergence Zone (ITCZ). A total of 22130 planktonic foraminifera specimens belonging to 30 species and 11 genera were identified, which shows a distinct seasonal variation with high values (125~288 specimens $m^{-2}day^{-1}$) in the winter to spring (December-May) and low values (16~23 specimens $m^{-2}day^{-1}$) in the fall (September-November). In addition, seasonal ecological differences of foraminifera assemblages are distinctly recognizable: omnivorous foraminifera occurred predominantly during the summer season, whereas herbivorous ones were dominant during the winter season. Such seasonal variations correspond to the seasonal shift of the ITCZ. Enhanced occurrence of herbivorous species during the winter-spring season seems a result of surface water mixing generated by the southward shift of the ITCZ. The increase in omnivorous species during the summer season may be due to the northward movement of the ITCZ caused by weakened wind speed, resulting in the intensification of water column stratification and nutrient-poor environment. A significant reduction of planktonic foraminifera specimens during the fall is attributed to heavy precipitation and reduction in light intensity.

Distribution of Hydrometeors and Surface Emissivity Derived from Microwave Satellite Observations and Model Reanalyses (위성관측(MSU)과 모델 재분석 자료에서 조사된 대기물현상과 표면 방출율의 분포)

  • Kim, Tae-Yean;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.23 no.7
    • /
    • pp.552-564
    • /
    • 2002
  • The data of satellite-observed Microwave Sounding Unit (MSU) channel 1 (Ch1) brightness temperature and General Circulation Model (GCM) reanalyses over the globe have been used to investigate low tropospheric hydrometeors and microwave surface emissivity during the period from January 1981 to December 1993. The average of GCM Ch1 temperature has been reconstructed from three kinds of reanalyses, based on the MSU weighting function. Since the GCM temperature mainly corresponds to the thermal state of the lower troposphere without the difference in the emissivity between ocean and land, it is higher in summer than in other seasons over the regions. The MSU temperature over the ocean shows its maximum at the ITCZ and the SPCZ due to hydrometeors. Over high latitude ocean, the temperature is enhanced because of sea ice emissivity, while it is reduced over the land. The seasonal displacement of the ITCZ and the SPCZ systematically appeared in the difference of Ch1 temperature between the GCM and the MSU. The difference values decrease in the regions of the ITCZ, the SPCZ, and the sea ice because of the increase of the MSU temperature. According to the local minima of the values, the ITCZ moves norhward to 9 N in fall, and the SPCZ moves southward to 12 S in boreal fall and winter. The sea ice in the northern hemisphere is extended southward to 53 N in winter, while the ice in the southern hemisphere, northward to 58 S in boreal summer. We also have discussed the separated contribution from hydrometeors and surface emissivity to the MSU Ch1 temperature, utilizing radiative transfer theory. The increase of 4-6K in the temperature over the ITCZ is inferred to result from hydrometeors of 1-1.5mm/day, and furthermore the increase of 10-30K over the high latitude ocean, ice emissivity of 0.6-0.9.

Temporal and Spatial Variability of Precipitation and Evaporation over the Tropical Ocean

  • Yoo, Jung-Moon;Lee, Hyun-A
    • Journal of the Korean earth science society
    • /
    • v.24 no.1
    • /
    • pp.22-29
    • /
    • 2003
  • Temporal and spatial variability of precipitation (P), evaporation (E), and moisture balance (P-E; precipitation minus evaporation) has been investigated over the tropical ocean during the period from January 1998 to July 2001. Our data were analyzed by the EOF method using the satellite P and E observations made by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and the Special Sensor Microwave/Imager (SSM/I). This analysis has been performed for two three-year periods as follow; The first period which includes the El Ni${\tilde{n}}$o in early 1998 ranges from January 1998 to December 2000, and the second period which includes the La Ni${\tilde{n}}$o events in the early 1999 and 2000 (without El Ni${\tilde{n}}$o) ranges from August 1998 to July 2001. The areas of maxima and high variability in the precipitation and in the P-E were displaced from the tropical western Pacific and the ITCZ during the La Ni${\tilde{n}}$o to the tropical middle Pacific during the El Ni${\tilde{n}}$o, consistent with those in previous P studies. Their variations near the Korean Peninsula seem to exhibit a weakly positive correlation with that in the tropical Pacific during the El Ni${\tilde{n}}$o. The evaporation, out of phase with the precipitation, was reduced in the tropical western Pacific due to humid condition in boreal summer, but intensified in the Kuroshio and Gulf currents due to windy condition in winter. The P-E variability was determined mainly by the precipitation of which the variability was more localized but higher by 2-3 times than that of evaporation. Except for the ITCZ (0-10$^{\circ}$N), evaporation was found to dominate precipitation by ${\sim}$2 mm/day over the tropical Pacific. Annual and seasonal variations of P, E, and P-E were discussed.

Interrelationships between Sea Surface Temperatures and Clouds over the Tropical Oceans (열대 해양의 해수면온도와 구름의 상호관계)

  • 송봉근;김영섭;박경원
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.92-97
    • /
    • 2001
  • The intra-annual and interannual variations of total, high, middle, low clouds, and cloud forcing net solar radiation flux, cloud forcing net long-wave radiation flux, and SSTs over the tropical oceans are investigated with the use of ISCP D2, NCEP/NCAR Reanalysis for January 1983-December 1993. The intra-annual variation of total cloudiness is dominated by high and middle clouds in the western Pacific and central tropical oceans, the interannual variation of total cloudiness is also dominated by high and middle clouds in the central Pacific and Atlantic. The dominant intra-annual and interannual EOFs of total cloudiness have spatially coherent link with those SSTs. For the interannual EOFs, total cloudiness and SSTs are related to E1 nino-Southern Oscillation(ENSO). The second most important intra-annual EOFs of total cloudiness are related to Inter Tropical Convergence Zone(ITCZ). The third most important intra-annual EOFs show coherent relation in the western Pacific. The correlation analysis between cloud radiative effects and SSTs show spatially coherent relation over the tropical oceans even though cloud forcing cooling effect is much higher than heating effect.

  • PDF

Study on Characteristic of Asian Summer Monsoon by Satellite data and Re-analysis data

  • Lee, Sung-Ae;Sugimori, Yasuhiro;Suwa, Jun;Kim, Young-Seop
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.325-329
    • /
    • 1999
  • The characteristic of East Asian summer monsoon is investigated using 8-year (March 1987-February 1995) - averaged monthly and 5-day mean 1 degree latitude-longitude gridded GMS high-cloud-amount data (HCA). An analysis of these data shows the convective zone (ITCZ) clouds which defined as the percentage of the total grid area covered by clouds with a cloud-top temperature below the 400 hPa-level climatological temperature. The HCA increased clearly over equatorial zone during December and January and 30-40 $^{\circ}$N during May and June. These HCA patterns are coincided with seasonal cycles of summer monsoon which is introduced in historical references. The relationship with the summer monsoon winds as climatological changing of wind direction is analyzed by ECMWF re-analysis 2.5-degree latitude-longitude grid surface data which is calculated with 8-year averaged from January 1987 to January 1995. In addition, the monsoon winds are showed by separated U, V-wind components far manifestation a tendency of onset and retreat data of seasonal monsoon.

  • PDF

Development of 12-month Ensemble Prediction System Using PNU CGCM V1.1 (PNU CGCM V1.1을 이용한 12개월 앙상블 예측 시스템의 개발)

  • Ahn, Joong-Bae;Lee, Su-Bong;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.455-464
    • /
    • 2012
  • This study investigates a 12 month-lead predictability of PNU Coupled General Circulation Model (CGCM) V1.1 hindcast, for which an oceanic data assimilated initialization is used to generate ocean initial condition. The CGCM, a participant model of APEC Climate Center (APCC) long-lead multi-model ensemble system, has been initialized at each and every month and performed 12-month-lead hindcast for each month during 1980 to 2011. The 12-month-lead hindcast consisted of 2-5 ensembles and this study verified the ensemble averaged hindcast. As for the sea-surface temperature concerns, it remained high level of confidence especially over the tropical Pacific and the mid-latitude central Pacific with slight declining of temporal correlation coefficients (TCC) as lead month increased. The CGCM revealed trustworthy ENSO prediction skills in most of hindcasts, in particular. For atmospheric variables, like air temperature, precipitation, and geopotential height at 500hPa, reliable prediction results have been shown during entire lead time in most of domain, particularly over the equatorial region. Though the TCCs of hindcasted precipitation are lower than other variables, a skillful precipitation forecasts is also shown over highly variable regions such as ITCZ. This study also revealed that there are seasonal and regional dependencies on predictability for each variable and lead.

Characteristics of the Gross Moist Stability in the Tropics and Its Future Change (열대 지역 Gross Moist Stability 특징 분석 및 미래 변화)

  • Kim, Hye-Won;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.141-150
    • /
    • 2014
  • This study investigates the characteristics of the Gross Moist Stability (GMS) over the tropics. The GMS summarizes the relationship between large-scale entropy forcing due to radiation and surface fluxes and the response of smaller-scale convection. The GMS is able to explain both to where moist entropy is advected by the atmospheric circulation and how deep the moisture flux convergence is in the tropical region. In the deep convective region, positive GMS appears over the warm pool region due to the strong column-integrated moisture convergence and the ensuing export of moist entropy to the environment. The vertical advection of moist entropy dominates over the horizontal advection in this region. Meanwhile, over the eastern tropical ITCZ region, which is characterized by shallow convective area, import of moist entropy by horizontal winds is dominant compared to the vertical moist entropy advection. Future changes in the GMS are also examined using the 22 CMIP5 model simulations. A decrease in the GMS appears widely across the tropics, but its increase occurs over the western-central equatorial Pacific. It is evident that the increased GMS region corresponds to an increased region of precipitation, implying that strengthened convection in the future due to increased entropy forcing exports the enhanced moist energy to stabilize the environment.

Analysis of Precipitable water over Global and East Asia using MODIS satellite data (MODIS 위성자료를 이용한 전구 및 동아시아의 가강수량 분석)

  • Lee, Sang-Hun;Park, Seon-K.;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1635-1639
    • /
    • 2010
  • 기후변화가 수자원에 미치는 영향을 파악하기 위해서는 물 순환 및 물 수지의 변화 경향 파악이 필수적이며, 대기 중의 가강수량 파악은 가뭄 호우 등에 대한 기본 조사로서 수자원 연구에 필요하다. 본 연구에서는 MODIS 위성자료로부터 가강수량을 산출하여 검증하고, 전구 및 동아시아의 분포 특성 및 변화 경향을 분석하였다. MODIS 위성자료는 NASA의 홈페이지로부터 입수하여 가강수량을 산출하였고, 산출한 가강수량은 NCEP Reanalysis2 자료를 이용하여 검증하였다. MODIS 위성자료를 이용하여 전구 가강수량의 경년변화 및 분포 분석을 실시한 결과 가강수량의 분포는 ITCZ의 움직임과 잘 일치하였고, 6월에 가장 많은 가강수량을 나타내며 10월에 가장 적은 가강수량을 나타냈다. 경년변화는 2000년대 중반까지는 증가하는 경향을 보이고 있었지만 최근 3년 정도는 감소하는 추세를 보이고 있다. MODIS 위성자료를 이용하여 동아시아 지역 가강수량의 경년변화 및 분포 분석을 실시한 결과 가강수량의 분포는 계절적인 특징을 잘 나타내고 있으며, 7월에 가장 많은 가강수량을 나타내고 있으며 11월에 가장 적은 가강수량을 나타내고 있고, 경년변화는 큰 변화는 보이지 않았다. MODIS 위성으로부터 산출한 가강수량과 표면온도를 비교한 결과 가강수량은 계절적인 특징은 거의 비슷한 변화를 가지고 있으며 년 변화에서는 동아시아 가을의 변화가 통계적으로 유의한 양의 상관관계를 가지고 있었으며, 동아시아 가을의 가강수량은 표면온도와 함께 증가하는 경향을 나타내고 있다.

  • PDF

Observed and Simulated Seasonal Salinity in The Tropical Atlantic ocean, and its Relationship with Freshwater (관측과 모델에서 얻어진 열대 대서양에서의 계절별 염분 분포 및 담수 효과)

  • YOO, JUNG-MOON
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.290-302
    • /
    • 1992
  • Seasonal variations of salinity in the upper 500 m of the tropical Atlantic Ocean are examined, based on both climatological seasonal salinity observations and numerical simulations with hydrological forcing. The seasonal cycle of sea surface salinity has strong seasonal variations caused by shifts of the freshwater surplus zone (i.e. the intertropical convergence zone) and the river outflow. The climatological seasonal salinity in this analysis concurs with other independent observations described by Default (1981) and Levitus (1982), but provides more consistent patterns with temperature structure. The effect of salinity on density below 100 m depth in the tropical Atlantic is negligible compared to tat of temperature, which in the mixed layer salinity affects density significantly. The systematic difference between observed and simulated salinity is found to be the fact that the simulated salinity is higher in the subtropics than the observed salinity, and possible sources about the difference are also discussed.

  • PDF