• 제목/요약/키워드: IT2TSK fuzzy logic

검색결과 3건 처리시간 0.018초

Interval Type-2 TSK 퍼지논리시스템 기반 다중 퍼지 예측시스템 설계 (Design of Multiple Fuzzy Prediction System based on Interval Type-2 TSK Fuzzy Logic System)

  • 방영근;이철희
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.447-454
    • /
    • 2010
  • 본 논문은 예측 시스템의 성능을 개선하기 위해 비선형데이터의 내재된 특성이나 불확실성을 보다 효과적으로 반영할 수 있는 Interval Type-2 TSK 퍼지논리 시스템 기반 다중 퍼지 예측시스템의 설계를 다룬다. 본 논문에 제시된 다중 예측시스템들은 데이터의 비선형적 특성들을 효과적으로 고려하기 위해 설계되며, 각각의 시스템은 Type-1 TSK 퍼지논리나 다른 방법들에 비해 데이터의 불확실성을 충분히 반영할 수 있는 Interval Type-2 TSK 퍼지논리를 기반으로 구현된다. 또한, 1차 차분변환 과정을 통해, 데이터의 원형으로부터 최적의 차분데이터를 생성하고, 이들을 각 시스템의 입력으로 사용함으로써 시스템 설계 시 보다 안정된 통계적 정보를 제공할 수 있도록 한다. 마지막으로, 두 개의 전형적인 시계열 데이터의 예측 시뮬레이션을 통해 제안된 방법의 효용성을 검증한다.

HCBKA 기반 IT2TSK 퍼지 예측시스템 설계 (Design of HCBKA-Based IT2TSK Fuzzy Prediction System)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제60권7호
    • /
    • pp.1396-1403
    • /
    • 2011
  • It is not easy to analyze the strong nonlinear time series and effectively design a good prediction system especially due to the difficulties in handling the potential uncertainty included in data and prediction method. To solve this problem, a new design method for fuzzy prediction system is suggested in this paper. The proposed method contains the followings as major parts ; the first-order difference detection to extract the stable information from the nonlinear characteristics of time series, the fuzzy rule generation based on the hierarchically classifying clustering technique to reduce incorrectness of the system parameter identification, and the IT2TSK fuzzy logic system to reasonably handle the potential uncertainty of the series. In addition, the design of the multiple predictors is considered to reflect sufficiently the diverse characteristics concealed in the series. Finally, computer simulations are performed to verify the performance and the effectiveness of the proposed prediction system.

HCBKA를 이용한 Interval Type-2 퍼지 논리시스템 기반 예측 시스템 설계 (Prediction System Design based on An Interval Type-2 Fuzzy Logic System using HCBKA)

  • 방영근;이철희
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.111-117
    • /
    • 2010
  • To improve the performance of the prediction system, the system should reflect well the uncertainty of nonlinear data. Thus, this paper presents multiple prediction systems based on Type-2 fuzzy sets. To construct each prediction system, an Interval Type-2 TSK Fuzzy Logic System and difference data were used, because, in general, it has been known that the Type-2 Fuzzy Logic System can deal with the uncertainty of nonlinear data better than the Type-1 Fuzzy Logic System, and the difference data can provide more steady information than that of original data. Also, to improve each rule base of the fuzzy prediction systems, the HCBKA (Hierarchical Correlation Based K-means clustering Algorithm) was applied because it can consider correlationship and statistical characteristics between data at a time. Subsequently, to alleviate complexity of the proposed prediction system, a system selection method was used. Finally, this paper analyzed and compared the performances between the Type-1 prediction system and the Interval Type-2 prediction system using simulations of three typical time series examples.

  • PDF