• Title/Summary/Keyword: IT2TSK fuzzy logic

Search Result 3, Processing Time 0.017 seconds

Design of Multiple Fuzzy Prediction System based on Interval Type-2 TSK Fuzzy Logic System (Interval Type-2 TSK 퍼지논리시스템 기반 다중 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.447-454
    • /
    • 2010
  • This paper presents multiple fuzzy prediction systems based on an Interval type-2 TSK fuzzy Logic System so that the uncertainty and the hidden characteristics of nonlinear data can be reflected more effectively to improve prediction quality. In proposed method, multiple fuzzy systems are adopted to handle the nonlinear characteristics of data, and each of multiple system is constructed by using interval type-2 TSK fuzzy logic because it can deal with the uncertainty and the characteristics of data better than type-1 TSK fuzzy logic and other methods. For input of each system, the first-order difference transformation method are used because the difference data generated from it can provide more stable statistical information to each system than the original data. Finally, computer simulations are performed to show the effectiveness of the proposed method for two typical time series examples.

Design of HCBKA-Based IT2TSK Fuzzy Prediction System (HCBKA 기반 IT2TSK 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1396-1403
    • /
    • 2011
  • It is not easy to analyze the strong nonlinear time series and effectively design a good prediction system especially due to the difficulties in handling the potential uncertainty included in data and prediction method. To solve this problem, a new design method for fuzzy prediction system is suggested in this paper. The proposed method contains the followings as major parts ; the first-order difference detection to extract the stable information from the nonlinear characteristics of time series, the fuzzy rule generation based on the hierarchically classifying clustering technique to reduce incorrectness of the system parameter identification, and the IT2TSK fuzzy logic system to reasonably handle the potential uncertainty of the series. In addition, the design of the multiple predictors is considered to reflect sufficiently the diverse characteristics concealed in the series. Finally, computer simulations are performed to verify the performance and the effectiveness of the proposed prediction system.

Prediction System Design based on An Interval Type-2 Fuzzy Logic System using HCBKA (HCBKA를 이용한 Interval Type-2 퍼지 논리시스템 기반 예측 시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.111-117
    • /
    • 2010
  • To improve the performance of the prediction system, the system should reflect well the uncertainty of nonlinear data. Thus, this paper presents multiple prediction systems based on Type-2 fuzzy sets. To construct each prediction system, an Interval Type-2 TSK Fuzzy Logic System and difference data were used, because, in general, it has been known that the Type-2 Fuzzy Logic System can deal with the uncertainty of nonlinear data better than the Type-1 Fuzzy Logic System, and the difference data can provide more steady information than that of original data. Also, to improve each rule base of the fuzzy prediction systems, the HCBKA (Hierarchical Correlation Based K-means clustering Algorithm) was applied because it can consider correlationship and statistical characteristics between data at a time. Subsequently, to alleviate complexity of the proposed prediction system, a system selection method was used. Finally, this paper analyzed and compared the performances between the Type-1 prediction system and the Interval Type-2 prediction system using simulations of three typical time series examples.

  • PDF