• Title/Summary/Keyword: IT-섬유

Search Result 3,709, Processing Time 0.057 seconds

An Experimental Study on the Development of Electro Magnetic Pulse Shielding Cement Using Milled Carbon Fiber (저 직경 카본섬유를 사용한 전자기 펄스 차폐 시멘트 개발에 관한 실험적 연구)

  • Min, Tae-Beom
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.429-435
    • /
    • 2020
  • In this study, physical properties and EMP shielding performance evaluation of cement paste according to the amount of milled carbon fiber was conducted to develop EMP shielding cement using carbon fiber. The length of the milled carbon fiber used was 100㎛, and it was used as a cement admixture because it showed a powdery form to the naked eye. As a result of the experiment, when 5% of the amount of cement was used, the milled carbon fiber was effective in compressive strength and EMP shielding, and the shielding effect did not increase when used beyond that. As a result of examining the EMP shielding performance according to the thickness of the specimen, the plain without milled carbon fiber had no effect of increasing the shielding rate according to the thickness. The shielding performance of the specimens using the milled carbon fiber increased as the thickness increased. Therefore, in order to increase the EMP shielding rate when comparing and evaluating the performance according to the amount of milled carbon fiber used and the thickness of the specimen, 5% of the milled carbon fiber used is optimal. In addition, the method of increasing the thickness is considered to be effective.

The Oxidation Behavior of Pitch based Carbon Fibers in ${CO}_2$ Gas and Air (${CO}_2$ gas및 공기중에서 피치계 탄소섬유의 산화거동)

  • No, Jae-Seung;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 1997
  • Two-types of carbon fiber, anisotropic- and isotropic- pitch based, were expose to isothermal oxidation in air and $CO_{2}$ gas and the weight change rates was measured by TGA apparatus. Thc oxidation rate was laster in air than in $CO_{2}$ gas, and the oxidation rare of isotropic T- 101s liher was over 23 9 times faster than that of anisotropic HM-60 filler at $600^{\circ}C$ in air. The activation energy was 36-56 Kcal/mole at lower temperature range and 6- 13 Kcal/molc at higher temperature range. It was higher that the transition temperalure 01 reaction zone(zone 1. 2, :i) of 11M-GO fiber than that of T-101s fiber, and it was higher in $CO_{2}$ gas than in air. From SEM observation, it Lvas found that the oxidation of carbon fibers was progressed through the imperfection.

  • PDF

Effect of Anodized Carbon Fiber Surfaces on Interfacial Adhesion of Carbon Fiber-reinforced Composites (양극산화된 탄소섬유가 복합재료의 계면결합력에 미치는 영향)

  • 박수진;김문한;최선웅;이재락
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.499-504
    • /
    • 2000
  • The effect of anodic oxidation on high strength PAN-based carbon fibers has been studied in terms of surface functionality and surface energetics of the fiber surfaces, resulting in improving the mechanical properties of composites. According to FT-IR and XPS measurements, it reveals that the oxygen functional groups on fiber surfaces induced by an anodic oxidation largely influence the surface energetics of fibers or the mechanical interfacial properties of composites, such as the interlaminar shear strength (ILSS) of composites. According to the contact angle measurements based on the wicking rate of a test liquid, it is observed that anodic oxidation does lead to an increase in surface free energy of the carbon fibers, mainly due to the increase of its specific (or polar) component. From the surface energetic point of view, it is found that good wetting plays an important role in improving the degree of adhesion at interfaces between fiber and epoxy resin matrix of the resulting composites. Also, a direct linear relationship is shown between 01s/01s ratio and ILSS or between specific component and ILSS of the composites for this system.

  • PDF

Test Method to Evaluate the Fiber Material Properties of Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 섬유 방향 물성 평가 기법)

  • Hwang, Tae-Kyung;Park, Jae-Beom;Kim, Hyoung-Geun
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.37-42
    • /
    • 2010
  • The fiber material properties, elastic constant and strength, are the most important factors among the various material properties for the design of composite pressure vessel, because of it's dominant influence on the performance of composite pressure vessel. That is, the deformation and burst pressure of pressure vessel highly affected by the fiber material properties. Therefore, the establishment of test method for exact fiber material properties is a priority item to design a composite pressure vessel. However, the fiber material properties in filament wound pressure vessel is very sensitive on various processing variables (equipment, operator and environmental condition etc..) and size effect, so that it isn't possible to measure exact fiber material properties from existing test methods. The hydro-burst test with full scale pressure vessel is a best method to obtain fiber material properties, but it requires a enormous cost. Thus, this paper suggests a newly developed test method, hoop ring test, that is capable of pressure testing with ring specimens extracted from real composite pressure vessel. The fiber material properties from hoop ring test method showed good agreement with the results of hydro-burst test with full scale composite pressure vessels.

Preparation and Characteristics of Sulfonated HIPS ion Exchange Nanofiber by Electrospinning (전기방사에 의한 술폰화 HIPS 이온교환 나노섬유의 제조 및 특성)

  • Choi, Eun-Jung;Hwang, Taek-Sung
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.69-74
    • /
    • 2011
  • In this study, it was prepared for nanofiber with high impact polystyrene(HIPS). HIPS is able to crosslinking after electrospinning with crosslinking agent and it could overcome brittle characteristics of polystyrene(PS). After thermal crosslinking, HIPS nanofiber was sulfonated by sulfuric acid. It was investigated FT-IR, XPS, water uptake, ion exchange capacity(IEC), SEM, and contact angle. According to the result of FT-IR and XPS, it was increased due to introduce the hydrophilic group($SO_3H$) in the HIPS nanofiber. The highest water uptake and IEC were 75.6%, 2.67 meq/ g at 120 min sulfonation time with 7.5 wt% DVB.

Interfacial Morphology of Glass Fiber/Polypropylene Composite (유리 섬유/폴리프로필렌 복합재료의 계면 형태구조)

  • 남주영;박수현;이광희;김준경
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.299-306
    • /
    • 2003
  • It is well known that the interaction and adhesion between the glass fiber (GF) and polymer matrix has a significant effect in determining the properties of fiber-reinforced materials. Therefore, it is one of important considerations to modify the surface of glass fiber with an appropriate sizing. We investigated the treatment method of glass fiber with coupling agent to improve the interaction of the interfacial region. The correlation between interfacial property and interphase microstructure was also examined in an attempt to realize a proper morphology at the glass fiber surfaces.

Experimental study on pullout performance of structural fiber embedded in cement composites according to fineness modulus of fine aggregate (시멘트 복합체에 근입된 숏크리트용 구조 섬유의 잔골재 조립률에 따른 인발성능 비교)

  • Choi, Chang-Soon;Lee, Sang-Don;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.317-326
    • /
    • 2022
  • This research performed single fiber pull-out test to evaluate the effect between fineness modulus of cement composites and the fiber bond performance (bond strength and pull-out energy). A synthetic fiber (polypropylene) and a steel fiber (hooked ends type) were inserted in the middle of dog bone shape specimens which were designed with fine aggregates of F. M. 1.96, 2.69, 3.43. The experiment results showed bond strength and pullout energy of synthetic fiber are improved as fineness modulus of cement composites increases. It is considered that the frictional resistance between synthetic fiber and cement composite increases as fineness modulus of cement composite increases and consume more energy while pull out the fiber from cement composite. However bond performance of steel fiber which resist pull out by mechanical behavior is less effected on fineness modulus of cement composite. It is considered that the mechanical fixedness of hooked ends exerts a greater effect on the pullout resistance than the frictional resistance between the cement composite and the steel fiber so F. M. of fine aggregate has a relatively small effect on the pullout resistance with the steel fiber.

The Mechanical Properties of Recycled Plastic Fiber-Reinforced Concrete (재활용 플라스틱 섬유보강 콘크리트의 역학적 특성)

  • Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.225-232
    • /
    • 2014
  • This paper concerns the mechanical properties of recycled plastic fiber-reinforced concrete. It presents experimental research results of recycled fiber-reinforced concrete with fiber volume fractions of 0, 0.5, 1.0, 1.5, and 2%. Experiments were performed to measure mechanical properties such as compressive strength, elastic modulus, tensile strength, and length changes. The results show that both compressive strength and elastic modulus decreased as fiber volume fraction increased. In addition, the experimental results show that recycled fiber-reinforced concrete is in favor of split tensile strength, flexural tensile strength, characteristic regarding crack mouth opening displacement, and length changes. The results of this study can be used to provide realistic information for modeling of mechanical properties in recycled plastic fiber-reinforced concrete in the future.

Manufacture and Mechanical Properties of Carbon Nanofiber Reinforced Hybrid Composites (탄소나노섬유가 강화된 하이브리드 복합재료의 제조 및 기계적 특성)

  • Chung Sang-Su;Park Ji-Sang;Kim Tae-Wook;Kong Jin-Woo
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2005
  • Carbon nanofiber exhibits superior and of ien unique characteristics of mechanical, electrical, chemical and thermal properties. Despite of the excellent properties of carbon nanofiber, the properties of carbon nanofiber filled polymer composites were not increased largely. The reason is that it is still difficult to ensure the uniform dispersion of carbon nanofiber in a polymer matrix. In this study, for improvement of the mechanical properties of composites, carbon nanofiber reinforced hybrid composites was investigated. For the dispersion of carbon nanofiber. solution blending method using ultrasonic was used. Dispersion of carbon nanoifiber was observed by scanning electron microscope (SEH). Mechanical properties were measured by universal testing machine(UTM).

Fiber Orientation Impacts on the Flexural Behavior of Steel Fiber Reinforced High Strength Concrete (섬유의 방향성이 강섬유 보강 초고강도 콘크리트의 휨거동 특성에 미치는 영향)

  • Kang, Su-Tae;Kim, Yun-Yong;Lee, Bang-Yun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.731-739
    • /
    • 2008
  • To evaluate the fiber orientation characteristics and estimate its effect on the flexural strength of steel fiber reinforced ultra high strength concrete with directions of concrete placing, we developed an image processing technique and carried out the flexural test to quantify the effect of fiber orientation characteristics on the flexural strength as well. The image processing technique developed in this study could evaluate quantitatively the fiber orientation property by the use of dispersion coefficient, the number of fibers in a unit area, and fiber orientation. It was also found that the fiber orientation characteristics were dependent on the direction of concrete placing. Fiber orientation characteristic was revealed to strongly affect the ultimate flexural strength, while hardly affecting the first cracking strength. Theoretical model for flexural strength was applied to compare with test results, which exhibited a good agreement.