• Title/Summary/Keyword: ISP (image signal processors)

Search Result 2, Processing Time 0.026 seconds

Implementing Efficient Camera ISP Filters on GPGPUs Using OpenCL (GPGPU 기반의 효율적인 카메라 ISP 구현)

  • Park, Jongtae;Facchini, Beron;Hong, Jingun;Burgstaller, Bernd
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1784-1787
    • /
    • 2010
  • General Purpose Graphic Processing Unit (GPGPU) computing is a technique that utilizes the high-performance many-core processors of high-end graphic cards for general-purpose computations such as 3D graphics, video/image processing, computer vision, scientific computing, HPC and many more. GPGPUs offer a vast amount of raw computing power, but programming is extremely challenging because of hardware idiosyncrasies. The open computing language (OpenCL) has been proposed as a vendor-independent GPGPU programming interface. OpenCL is very close to the hardware and thus does little to increase GPGPU programmability. In this paper we present how a set of digital camera image signal processing (ISP) filters can be realized efficiently on GPGPUs using OpenCL. Although we found ISP filters to be memory-bound computations, our GPGPU implementations achieve speedups of up to a factor of 64.8 over their sequential counterparts. On GPGPUs, our proposed optimizations achieved speedups between 145% and 275% over their baseline GPGPU implementations. Our experiments have been conducted on a Geforce GTX 275; because of OpenCL we expect our optimizations to be applicable to other architectures as well.

Illuminance Dynamic Range Expansion using Gamma & Multi-Point Knee for Smart Phone Camera (감마 및 다중 포인터 니를 이용한 스마트폰 카메라의 광 다이나믹 영역 확장)

  • Choi, Duk-Kyu;Han, Chan-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • The narrow dynamic range of most smart phone cameras is severely limited. It usually is narrower than the dynamic range of most scenes. So we proposes a illuminance dynamic range expansion using multi-point knee for smart phone camera. Such as logarithmic functions the proposed method compress the image sensor output signal. Additionally, the proposed method was merged into the gamma that is essential circuit for any cameras. To justifying multi-point knee effectiveness, we configure the control and quality evaluation system for smart phone camera module. Experimental results show that the lost information by cut off and saturated affectively reconstructed in darker and in brighter areas. Finally this methods have advantage to implement without any changing hardware for conventional smart phones.