• Title/Summary/Keyword: ISODATA Clustering

Search Result 33, Processing Time 0.016 seconds

Improvement of MODIS land cover classification over the Asia-Oceania region (아시아-오세아니아 지역의 MODIS 지면피복분류 개선)

  • Park, Ji-Yeol;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.51-64
    • /
    • 2015
  • We improved the MODerate resolution Imaging Spectroradiometer (MODIS) land cover map over the Asia-Oceania region through the reclassification of the misclassified pixels. The misclassified pixels are defined where the number of land cover types are greater than 3 from the 12 years of MODIS land cover map. The ratio of misclassified pixels in this region amounts to 17.53%. The MODIS Normalized Difference Vegetation Index (NDVI) time series over the correctly classified pixels showed that continuous variation with time without noises. However, there are so many unreasonable fluctuations in the NDVI time series for the misclassified pixels. To improve the quality of input data for the reclassification, we corrected the MODIS NDVI using Correction based on Spatial and Temporal Continuity (CSaTC) developed by Cho and Suh (2013). Iterative Self-Organizing Data Analysis (ISODATA) was used for the clustering of NDVI data over the misclassified pixels and land cover types was determined based on the seasonal variation pattern of NDVI. The final land cover map was generated through the merging of correctly classified MODIS land cover map and reclassified land cover map. The validation results using the 138 ground truth data showed that the overall accuracy of classification is improved from 68% of original MODIS land cover map to 74% of reclassified land cover map.

Bioclimatic Classification and Characterization in South Korea (남한의 생물기후권역 구분과 특성 규명)

  • Choi, Yu-Young;Lim, Chul-Hee;Ryu, Ji-Eun;Piao, Dongfan;Kang, Jin-Young;Zhu, Weihong;Cui, Guishan;Lee, Woo-Kyun;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.3
    • /
    • pp.1-18
    • /
    • 2017
  • This study constructed a high-resolution bioclimatic classification map of South Korea which classifies land into homogeneous zones by similar environment properties using advanced statistical techniques compared to existing ecological area classification studies. The climate data provided by WorldClim(1960-1990) were used to generate 27 bioclimatic variables affecting biological habitats, and key environmental variables were derived from Correlation Analysis and Principal Component Analysis. Clustering Analysis was performed using the ISODATA method to construct a 30'(~1km) resolution bioclimatic classification map. South Korea was divided into 21 regions and the results of classification were verified by correlation analysis with the Gross Primary Production(GPP), Actual Vegetation map made by the Ministry of Environment. Each zones' were described and named by its environmental characteristics and major vegetation distribution. This study could provide useful spatial frameworks to support ecosystem research, monitoring and policy decisions.

A Comparative Analysis of land Cover Changes Among Different Source Regions of Dust Emission in East Asia: Gobi Desert and Manchuria (동아시아의 황사발원지들에 대한 토지피복 비교 연구: 고비사막과 만주)

  • Pi, Kyoung-Jin;Han, Kyung-Soo;Park, Soo-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.175-184
    • /
    • 2009
  • This study attempts to analyze the difference among the variations of ecological distribution in Gobi desert and Manchuria through satellite based land cover classification. This was motivated by two well-known facts: 1) Gobi desert, which is an old source region, had been gradually expanded eastward; 2) Manchuria, which is located in east of Gobi desert, was observed as a new source region of yellow dust. An unsupervised classification called ISODATA clustering method was employed to detect the land cover change and to characterize the status of desertification and its expanding trends using NDVI (Normalized Difference Vegetation Index) derived from VEGETATION sensor onboard the SPOT satellite for 1999 and 2007. We analyzed NDVI annual variation pattern for every classes and divide into 5 level according to their vegetation's density level based on NDVI. As results, Gobi desert is showed positive variation: a decrease $78,066km^2$ in central Gobi desert and out skirts of Gobi desert (level-0) but Manchuria area is worse than previous time: an increase $25,744km^2$.