• 제목/요약/키워드: ISO-834 standard heating

검색결과 17건 처리시간 0.023초

비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구 (A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating)

  • 김규용;이형준;이태규;김영선;강선종
    • 한국화재소방학회논문지
    • /
    • 제23권3호
    • /
    • pp.31-39
    • /
    • 2009
  • 최근 고층건물의 화재안전성에 대한 문제점이 사회적으로 부각되어지고 있으며, 이러한 고층 건물에 다수 사용되고 있는 CFT기둥 부재에 대한 내화성능을 정량적으로 평가하는 방법이나 기준들이 마련되지 않은 상황이다. 이에 본 연구에서는 고강도 콘크리트를 충전한 CFT 단주를 제작하여 내화실험을 실시하고, 화재시 내화성능평가 및 비정상온도분포해석을 이용한 해석을 수행하여 온도분포해석의 모델링을 제안할 수 있었다. 이것을 기초로 CFT Stub Column의 고온특성 평가결과를 활용하여 화재시 내화시간에 따른 CFT기둥의 잔존내력 예측식을 유도할 수 있었다.

화재가열을 받은 고강도 콘크리트를 충전한 CFT 기둥의 내화성능 평가에 관한 실험적 연구 (An Experimental Study on the Evaluation of Fire-Resist Performance of High-Strength Concrete Filled steel Tube Column at Fire)

  • 이형준;이태규;김영선;한희철;김규용;김무한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 춘계 학술논문 발표대회
    • /
    • pp.193-197
    • /
    • 2008
  • Recently, it increases in use of CFT(Concrete filled steel tube, below CFT) that is an excellent internal force and deformation capacity because material and method are required to be diversification and High-Performance according to increase the super-high structure. And it is proposed to use high-strength Concrete Filled steel Tube Column. But it is difficult quantitative evaluation about fire-resist performance of CFT because steel tube bind concrete. Also, the case of high strength CFT is feared that spalling occur inside. Therefore, this study made CFT specimen that determine the factor(which is strength of concrete) and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, it tried to analyze internal temperature through nonlinear transient heat flow analysis.

  • PDF

도로터널 라이닝 화재손상 평가를 위한 가열로 개발에 관한 연구 (A Study on Development of Furnance for Road Tunnel Lining Fire Damage Evaluation)

  • 박경훈;김흥열;김형준
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 추계학술논문발표회 논문집
    • /
    • pp.479-483
    • /
    • 2008
  • There are no International Standards or Criteria pertaining to fires inside tunnels at the moment, but there are some fire-related regulations in some advanced countries such as Germany and the Netherlands where some fire-related studies have been expedited. Germany has established regulations related to the safety of structures by stipulating Fire Curves of RABT and EBA Tunnels. Also, the Netherlands has established the resistance capacity of structures by stipulating RWS curve so that they can prevent the adjacent area from being damaged due to a tunnel collapse. Hydrocarbon Fire Curve is the standard assessing the behaviour of a structure in a serious fire, by increasing the heating speed and the maximum temperature of ISO 834 Curve, while MHC Fire Curve, which was established in France, realizes more serious fire conditions. In this study, we aimed to develop the basis of full-sized experiments, with which you can assess the fire-resisting capacity against the fire strength of concrete PC panel lining, through the realization of various tunnel fire curves as mentioned above, by developing the heating furnace suitable for the requirements of Fire-Resisting Standards, with which you can assess the fire damage of tunnel concrete lining. We have developed various conditions of the heating furnace and the method to install a thermo couple within the furnace based on EFNARC and KS F2257-1. We have also conducted a calibrating experiment in order to secure its reliability.

  • PDF

Numerical and experimental analysis on the axial compression performance of T-shaped concrete-filled thin-walled steel

  • Xuetao Lyu;Weiwei Wang;Huan Li;Jiehong Li;Yang Yu
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.383-401
    • /
    • 2024
  • The research comprehensively studies the axial compression performance of T-shaped concrete-filled thin-walled steel tubular (CTST) long columns after fire exposure. Initially, a series of tests investigate the effects of heating time, load eccentricity, and stiffeners on the column's performance. Furthermore, Finite Element (FE) analysis is employed to establish temperature and mechanical field models for the T-shaped CTST long column with stiffeners after fire exposure, using carefully determined key parameters such as thermal parameters, constitutive relations, and contact models. In addition, a parametric analysis based on the numerical models is conducted to explore the effects of heating time, section diameter, material strength, and steel ratio on the axial compressive bearing capacity, bending bearing capacity under normal temperature, as well as residual bearing capacity after fire exposure. The results reveal that the maximum lateral deformation occurs near the middle of the span, with bending increasing as heating time and eccentricity rise. Despite a decrease in axial compressive load and bending capacity after fire exposure, the columns still exhibit desirable bearing capacity and deformability. Moreover, the obtained FE results align closely with experimental findings, validating the reliability of the developed numerical models. Additionally, this study proposes a simplified design method to calculate these mechanical property parameters, satisfying the ISO-834 standard. The relative errors between the proposed simplified formulas and FE models remain within 10%, indicating their capability to provide a theoretical reference for practical engineering applications.

Spalling Properties of High Strength Concrete Mixed with Various Mineral Admixtures Subjected to Fire

  • Han, Cheon-Goo;Han, Min-Cheol;Heo, Young-Sun
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권1호
    • /
    • pp.41-48
    • /
    • 2008
  • This study investigates the spalling properties of high strength concrete designed with various types of mineral admixture and diverse content ratios of polypropylene (PP) fiber. Experimental factors considered in series I are four pozzolan types of mineral admixture and series II consists of three shrinkage reducing types of mineral admixture. PP fiber was added 0.05, 0.10 and 0.15vol. % in each mixture of series I and series II, so that totally 27 specimens including control concretes in each series were prepared. Test results showed that the increase of fiber content decreased the slump flow of fresh concrete and increased or decreased the air content depending on the declining ratio of slump flow. For the properties of compressive strength, all specimens were indicated at around 50 MPa, which is high strength range; especially all specimens in series II were 60 MPa. Fire test was conducted in standard heating curve of ISO 834 with ${\phi}100{\times}200\;mm$ size of cylinder moulds for 1 hour. The specimens incorporating silica fume exhibited severe spalling and most specimens without the silica fume could be protected from the spalling occurrence in only 0.05vol % of PP fiber content. This fire test results demonstrated that the spalling occurrence in high strength concrete was not only affected by concrete strength related to the porosity of microstructure but also, even more influenced by micro pore structure induced by the mineral admixtures.

고온에서 폴리프로필렌섬유와 비정질강섬유를 보강한 150MPa급 초고강도 콘크리트의 수증기 압력특성 (The water vapor pressure property of 150MPa level ultra high strength concrete reinforced with polypropylene fiber and amorphous steel fiber at high temperature)

  • 서동균;김규용;이상규;황의철;유하민;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.132-133
    • /
    • 2020
  • The aim of this study is to evaluate the combination effect of amorphous steel fiber and polypropylene fiber on spalling of the 150MPa level ultra high strength concrete. Considering spalling has a great relationship with water vapor pressure, this paper is focusing on water vapor pressure. The test specimens were heated accordance with ISO-834 Standard Curve using electric heating furnace, the depth of 10mm water vapor pressure formation was tend to get faster and spalling damage become severe when the mixing proportion of amorphous steel fiber increase. When using ultra high strength concrete reinforced with amorphous steel fiber, further research about proper mixing proportion of polypropylene fiber.

  • PDF

Post-fire test of precast steel reinforced concrete stub columns under eccentric compression

  • Yang, Yong;Xue, Yicong;Yu, Yunlong;Gong, Zhichao
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.111-122
    • /
    • 2019
  • This paper presents an experimental work on the post-fire behavior of two kinds of innovative composite stub columns under eccentric compression. The partially precast steel reinforced concrete (PPSRC) column is composed of a precast outer-part cast using steel fiber reinforced reactive powder concrete (RPC) and a cast-in-place inner-part cast using conventional concrete. Based on the PPSRC column, the hollow precast steel reinforced concrete (HPSRC) column has a hollow column core. With the aim to investigate the post-fire performance of these composite columns, six stub column specimens, including three HPSRC stub columns and three PPSRC stub columns, were exposed to the ISO834 standard fire. Then, the cooling specimens and a control specimen unexposed to fire were eccentrically loaded to explore the residual capacity. The test parameters include the section shape, concrete strength of inner-part, eccentricity ratio and heating time. The test results indicated that the precast RPC shell could effectively confine the steel shape and longitudinal reinforcements after fire, and the PPSRC stub columns experienced lower core temperature in fire and exhibited higher post-fire residual strength as compared with the HPSRC stub columns due to the insulating effect of core concrete. The residual capacity increased with the increasing of inner concrete strength and with the decreasing of heating time and load eccentricity. Based on the test results, a FEA model was established to simulate the temperature field of test specimens, and the predicted results agreed well with the test results.