• 제목/요약/키워드: ISO 15099

검색결과 3건 처리시간 0.016초

창세트 전체 열관류율(Uw) 평가 방법에 따른 시뮬레이션 결과 비교 분석 - 단창 창세트에 대한 시뮬레이션 결과 비교를 중심으로 - (A comparative analysis of the simulation results of total window thermal transmittance(Uw) according to the evaluation method - Focused on comparison of the single window simulation results -)

  • 이용준;오은주;김사겸;최현중;김유민
    • KIEAE Journal
    • /
    • 제16권3호
    • /
    • pp.77-82
    • /
    • 2016
  • Purpose: The aim of this study is to calculate U-factor of the window using international standard methods and compare quantitative and tendency difference focused on ISO standard 15099 and ISO standard 10077. And the result of ISO standard calculation methods is verified using thermal performance experiment to evaluate applicability of domestic certification system. This study is utilized a basis for activation of domestic window certification system. Method: First, 16 cases are selected that is combined a variety of frame, Glazing, spacer, etc. The selected cases were simulated using WINDOW&THERM based on ISO 15099 and 10077 calculation method. Second, experiment was conducted based on Korean standard condition. Then, it was compared the error of experiment and simulation results. Through this process, ISO 15099 and 10077 calculation methods were evaluated accuracy and utilization. Result: The results show that the difference of ISO 15099 and ISO 10077-2 is maximum 5.4%. The results of comparing U-factor errors based on the Korea standard experiment test found 2.4%. Consequently, it will be possible to combination calculation methods of ISO 15099 and ISO 10077 for a single window.

창틀 공기층의 유효 열전도율(λeff) 산정방법 차이가 창 전체 열관류율(Uw) 시뮬레이션 결과에 미치는 영향에 대한 비교 분석 - 단창 창틀의 비환기 공기층에 대한 시뮬레이션을 중심으로 - (A comparative analysis of the total window thermal transmittance simulation result according to the evaluation method of effective conductivity(λeff) of frame cavity - Focused on unventilated frame cavity simulation results of single window -)

  • 이용준;오은주;김사겸;최경석;강재식
    • KIEAE Journal
    • /
    • 제16권2호
    • /
    • pp.79-85
    • /
    • 2016
  • Purpose: It is difficult to calculate frame U-value because of the two reason. First is selection of air properties in cavity. Second is calculation method in window frame. For this reason, it is important to decide cavity properties in window frame. However, international standards offered different method(ISO 15099, ISO 10077) and air properties was changed according to the two methods. The aim of this study was to suggest method for deriving accurate frame U-value using international standard methods and CFD simulation. Method: First, this study conducted analysis calculation method of ISO 15099 and ISO 10077. And, CFD simulation conducted based on same condition. Finally, ISO calculation and CFD simulation results were verified through comparison with real experiment results. Result: The results show that effective conductivity of ISO 15099 was the highest value. ISO 10077 and CFD result followed. The convergent values of ISO 10077 was the highest. ISO 15099 and CFD followed. ISO calculation reflecting CFD simulation results will reduce error with experimental results.

BIM기반 공동주택 결로 성능평가를 위한 프로세스 개선방안에 관한 기초연구 (A preliminary Study on Process Improvement for BIM based Condensation Performance Evaluation of Apartment Housings)

  • 홍주영;김대길;이명도;김대원
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.245-246
    • /
    • 2016
  • The condensation performance evaluation is required for improved living environment of apartment housings. In the current condensation performance evaluation process, high demand of manual works and repetitive process cause unexpected risks due to uncertainty and inefficiency by applying 2D CAD drawings in simulation tool. Furthermore, the evaluation requires taking in action responding to the expanding use of BIM. In this study, the analysis of current evaluation process and required functions for the process improvement based on BIM modeling were deducted from interviews with experts. It is expected that the results of this study can be employed to develop of process automation module for condensation simulation evaluation.

  • PDF