• Title/Summary/Keyword: ISM-Globules

Search Result 7, Processing Time 0.023 seconds

[ $^{13}CO$ ] OBSERVATIONS OF 17 SMALL DARK CLOUDS

  • KWON SUK MINN;FUKUI YASUO
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.197-198
    • /
    • 1996
  • We have carried out $^{13}CO$ J = 1 $\to$ 0 line observations with spatial resolution of 2' toward 17 small globules selected from the catalogue of Clemens & Barvainis (1988) with a selection criterion of [b] $\ge$ 15 degrees using the Nagoya 4-m radio telescope. Overall characteristics and physical parameters are presented and discussed by examining the $^{13}CO$ integrated intensity map for each of the globules.

  • PDF

WATER VAPOR MASERS: A SIGNPOST FOR LOW MASS STAR FORMATION

  • Migenes, V.;Trinidad, M.A.;Valdettaro, R.;Brand, J.;Palla, F.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.127-129
    • /
    • 2007
  • It is well known that water vapor maser emission at 22.2 GHz is associated with the earliest stages of both low- and high-mass star formation and it can be considered a reliable diagnostic of their evolutionary state. Bright Rimmed Clouds (BRCs) are clouds that have been compressed by an external ionization-shock front which focuses the neutral gas into compact globules. The boundary layer between the neutral gas and the gas ionized by the incident photons is often called "bright rim" but the clumps are sometimes classified also as speck globules or cometary globules depending on their appearance. Small globules with bright rims have been considered to be potential sites of star formation and have been studied in several individual regions. We present results from high resolution VLA observations searching for new candidates of recent star formation in bright-rimmed clouds/globules associated with IRAS point sources.

[ N2H+ ] OBSERVATIONS OF MOLECULAR CLOUD CORES IN TAURUS

  • TATEMATSU KEN'ICHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.279-282
    • /
    • 2005
  • We report the millimeter-wave radio observations of molecular cloud cores in Taurus. The observed line is the $N_2H^+$ emission at 93 GHz, which is known to be less affected by molecular depletion. We have compared starless (IRAS-less) cores with star-forming cores. We found that there is no large difference between starless and star-forming cores, in core radius, linewidth, core mass, and radial intensity profile. Our result is in contrast with the result obtained by using a popular molecular line, in which starless cores are larger and less condensed. We suggest that different results mainly come from whether the employed molecular line is affected by depletion or not. We made a virial analysis, and found that both starless and star-forming cores are not far from the critical equilibrium state, in Taurus. Together with the fact that Taurus cores are almost thermally supported, we conclude that starless Taurus cores evolve to star formation without dissipating turbulence. The critical equilibrium state in the virial analysis corresponds to the critical Bonnor-Ebert sphere in the Bonnor-Ebert analysis (Nakano 1998). It is suggested that the initial condition of the molecular cloud cores/globules for star formation is close to the critical equilibrium state/critical Bonnor-Ebert sphere, in the low-mass star forming region.

MAGNETIC FIELDS IN BRIGHT-RIMMED CLOUDS AND COMETARY GLOBULES TRACED USING R-BAND POLARIZATION OBSERVATIONS

  • SOAM, ARCHANA;GOPINATHAN, MAHESWAR;LEE, CHANG WON;BHATT, HRISH
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.87-88
    • /
    • 2015
  • We present results of our R-band polarimetry of a bright-rimmed cloud, IC1396A (with BRC 36), associated with the H II region S131 and the cometary globule LDN 1616 to study their magnetic field geometry. The distances of these clouds have been reported to be ~ 750 pc and ~ 450 pc, respectively in the literature. The young open cluster Trumpler 37 in the vicinity of IC1396A and the high mass stars in the Orion belt near L1616 are found to be responsible for the structure of these clouds. We made polarimetry of foreground stars inferred from their distances measured by the Hipparcos satellite to subtract the foreground contribution to the observed polarization results. We discuss the optical polarimetric results and compare our findings with MHD simulations towards BRCs and CGs.

MOLECULAR LINE STUDY OF L1014 WITH SRAO 6M TELESCOPE (L1014 분자운 핵에 대한 SRAO 6m 망원경을 이용한 분자선 관측연구)

  • Lee, Chang-Won
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.1-5
    • /
    • 2005
  • We report molecular line observations of CO(1-0), $^{13}CO(1-0)$, CS(2-1), and HCN(1-0) with SRAO 6m telescope toward L1014-IRS which is thought to be a very faint infrared source embedded in previously known 'starless' core L1014. The CO(1-0) observations find several components with different velocities along the line of sight of L1014, $4km\;s^{-1}$ and between $40{\sim}50km\;s^{-1}$. We find a parsec scale CO molecular outflow at the $4km\;s^{-1}$ component for the first time the direction of which is coincident with that of the small scale (${\sim}500pc$) outflow previously found. Although the observation is not covered for whole area of the outflow, the size of the molecular outflow seems not very inconsistent with the expected age of L1014-IRS. More accurate size and shape of the molecular outflow from L1014-IRS will be determined from the full coverage mapping in CO over the outflow region in very near future.

HCN(1-0) OBSERVATIONS OF STARLESS CORES

  • SOHN J,;LEE C, W,;LEE H, M.;PARK Y.-S.;MYERS P. C.;LEE Y.;TAFALLA M.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.261-263
    • /
    • 2004
  • We present a progress report on HCN(1-0) line observations toward starless cores to probe inward motions. We have made a single pointing survey toward the central regions of 85 starless cores and performed mapping observations of 6 infall candidate starless cores. The distributions of the velocity difference between HCN(1-0) hyperfine lines and the optically thin tracer $N_2H^+$(1-0) are significantly skewed to the blue, meaning that HCN(1-0) frequently detects inward motions. Their skewness to the blue is even greater than that of CS(2-1) Lee et al., possibly implying more infall occurrence than CS(1-0). We identify 19 infall candidates by using several characteristics illustrating spectral infall asymmetry seen in HCN(1-0) hyperfine lines, CS(3-2), CS(2-1), $DCO^+(2-1)$ and $N_2H^+$ observations. The HCN(1-0) F(O-l) with the least optical depth usually shows a similar intensity distribution to that of $N_2H^+$ which closely traces the density distribution of the cores, indicating that HCN(1-0) is less chemically affected and so believed to reflect kinematics occurring in rather inner regions of the cores. Detailed radiative transfer model fits of the spectra are underway to analyze central infall kinematics in starless cores.

INWARD MOTIONS IN STARLESS CORES TRACED WITH CS (3-2) and (2-1) LINES

  • LEE CHANG WON;MYERS PHILIP C.;PLUME RENE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.257-259
    • /
    • 2004
  • We compare the results of the surveys of starless cores performed with CS (2-1) and (3-2) lines to study inward motions in the cores. The velocity shifts of the CS(3-2) and (2-1) lines with respect to $N_2H^+$ are found to correlate well with each other and to have similar number distributions, implying that, in many cores, systematic inward motions of gaseous material may occur over a range of density of at least a factor ${\~}$4. Fits of the CS spectra to a 2-layer radiative transfer model in ten infall candidates suggest that the median effective line-of-sight speed of the inward-moving gas is ${\~}0.07 km\;s^{-l}$ for CS (3-2) and ${\~} 0.04 km\;s^{-l}$ for CS(2-1). Considering that the optical depth obtained from the fits is usually smaller in CS(3-2) than in (2-1) line, this may indicate that CS(3-2) usually traces inner, denser gas with greater inward motions than CS(2-1) implying that many of the infall candidates have faster infall toward the center. However, this conclusion may not be representative of all starless core infall candidates, due to the statistically small number analyzed here. Further line observations will be useful to test this conclusion.