• Title/Summary/Keyword: ISM: scattering

Search Result 9, Processing Time 0.029 seconds

THE STUDY OF SCATTERING IN THE ISM WITH HIGH RESOLUTION OBSERVATIONS OF OH MASERS

  • Migenes, Victor;Slysh, V.I.;Velasco, A.E.Ruis;Villalpando, S.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.131-132
    • /
    • 2007
  • The research of OH maser emission sources with high angular resolution is complicated by the effects of interstellar scattering: more over, most of the OH maser sources are located in the galactic plane where the scattering is largest. However, the data available from pulsar studies on the spatial distribution of the amount of scattering indicate that there is a strong non-uniformity in the distribution of the amount of scattering material. There are directions in the galactic plane where the scattering is an order of magnitude higher than the average, as well as directions where the scattering is much lower. The latter provide an opportunity to investigate OH masers with the full angular resolution offered by very long baseline interferometry instruments, like the VLBA, and measure their true angular size, shape and brightness temperature. We have observed approximately 100 OH maser sources, distributed all over the northern hemisphere, with the VLBA in order to study the scattering properties of the interstellar medium.

The Indoor Propagation Modeling for Indoor Wireless LAN Service (실내 무선 랜 서비스를 위한 실내 전파 모델링)

  • 김진웅;김기홍;윤영중;석재호;임재우;신용섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.426-435
    • /
    • 2002
  • In this paper we present an indoor propagation model for indoor wireless LAN service in the ISM band. We primarily use a 3D ray tracing as well as a patch scattering model in order to take into account the indoor fixtures. Therefore input parameters such as indoor environment parameters and antenna's types, polarizations are considered. As the results, we present fading characteristics and rms delay spread from time delay spread. In order to investigate the accuracy of the presented model, comparisons of predictions with measurement and simulations are performed in indoor wireless LAN service environments. The results show that measurements and simulations are very similar. Therefore in this paper, the effect of presented indoor propagation model is confirmed.

Dust Scattering in Turbulent Media: Correlation between the Scattered Light and Dust Column Density

  • Seon, Kwang-Il;Witt, Adolf N.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2014
  • Radiative transfer models in a spherical, turbulent interstellar medium (ISM), in which the photon source is situated at the center, are calculated to investigate the correlation between the scattered light and the dust column density. The medium is modeled using fractional Brownian motion structures that are appropriate for turbulent ISM. The correlation plot between the scattered light and optical depth shows substantial scatter and deviation from simple proportionality. It was also found that the overall density contrast is smoothed out in scattered light. In other words, there is an enhancement of the dust-scattered flux in low-density regions, while the scattered flux is suppressed in high-density regions. The correlation becomes less significant as the scattering becomes closer to being isotropic and the medium becomes more turbulent. Therefore, the scattered light observed in near-infrared wavelengths would show much weaker correlation than the observations in optical and ultraviolet wavelengths. We also find that the correlation plot between scattered lights at two different wavelengths shows a tighter correlation than that of the scattered light versus the optical depth.

  • PDF

Radiative Transfer Model of Dust Attenuation Curves in Clumpy, Galactic Environments

  • Seon, Kwang-il;Draine, Bruce T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.40.2-40.2
    • /
    • 2016
  • The attenuation of starlight by dust in galactic environments is investigated through models of radiative transfer in a spherical, clumpy interstellar medium (ISM). We show that the attenuation curves are primarily determined by the wavelength dependence of absorption rather than by the underlying extinction (absorption+scattering) curve; the observationally derived attenuation curves cannot constrain a unique extinction curve unless the absorption or scattering efficiency is specified. Attenuation curves consistent with the Calzetti curve are found by assuming the silicate-carbonaceous dust model for the Milky Way (MW), but with the $2175{\AA}$ bump suppressed or absent. The discrepancy between our results and previous work that claimed the Small Magellanic Cloud dust to be the origin of the Calzetti curve is ascribed to the difference in adopted albedos; we use the theoretically calculated albedos whereas the previous ones adopted empirically derived albedos from observations of reflection nebulae. It is found that the model attenuation curves calculated with the MW dust are well represented by a modified Calzetti curve with a varying slope and UV bump strength. The strong correlation between the slope and UV bump strength, as found in star-forming galaxies at 0.5 < z < 2.0, is well reproduced if the abundance of the UV bump carriers is assumed to be 30-40% of that of the MW-dust; radiative transfer effects lead to shallower attenuation curves with weaker UV bumps as the ISM is more clumpy and dustier. We also argue that some of local starburst galaxies have a UV bump in their attenuation curves, albeit very weak.

  • PDF

The Origins of the Warm Ionized Medium/Diffuse Ionized Gas

  • Seon, Gwang-Il;Witt, Adolf
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.48.1-48.1
    • /
    • 2013
  • It is known that the diffuse $H{\alpha}$ emission outside of bright H II regions not only are very extended, but also can occur in distinct patches or filaments far from H II regions, and the line ratios of [S II] ${\lambda}6716/H{\alpha}$ and [N II] ${\lambda}6583/H{\alpha}$ observed far from bright H II regions are generally higher than those in the H II regions. These observations have been regarded as evidence against the dust-scattering origin of the diffuse $H{\alpha}$ emission (including other optical lines), and the effect of dust scattering has been neglected in studies on the diffuse $H{\alpha}$ emission. However, as opposed to the previous contention, the expected dust-scattered $H{\alpha}$ halos surrounding H II regions are, in fact, in good agreement with the observed $H{\alpha}$ morphology. We find that the observed line ratios of [S II]/$H{\alpha}$, [N II]/$H{\alpha}$, and He I ${\lambda}5876/H{\alpha}$ in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the $H{\alpha}$ absorption feature in the underlying continuum from the dust-scattered starlight ("diffuse galactic light") and unresolved stars is able to substantially increase the [S II]/$H{\alpha}$ and [N II]/$H{\alpha}$ line ratios in the diffuse ISM.

  • PDF

THE FORMATION OF THE DOUBLE GAUSSIAN LINE PROFILES OF THE SYMBIOTIC STAR AG PEGASI

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • We analyze high dispersion emission lines of the symbiotic nova AG Pegasi, observed in 1998, 2001, and 2002. The Hα and Hβ lines show three components, two narrow and one underlying broad line components, but most other lines, such as HI, HeI, and HeII lines, show two blue- and red-shifted components only. A recent study by Lee & Hyung (2018) suggested that the double Gaussian lines emitted from a bipolar conical shell are likely to form Raman scattering lines observed in 1998. In this study, we show that the bipolar cone with an opening angle of 74°, which expands at a velocity of 70 km s-1 along the polar axis of the white dwarf, can accommodate the observed double line profiles in 1998, 2001, and 2002. We conclude that the emission zone of the bipolar conical shell, which formed along the bipolar axis of the white dwarf due to the collimation by the accretion disk, is responsible for the double Gaussian profiles.

EFFECTS OF COLLISIONAL DE-EXCITATION ON THE RESONANCE DOUBLET FLUX RATIOS IN SYMBIOTIC STARS AND PLANETARY NEBULAE

  • Kang, Eun-Ha;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.3
    • /
    • pp.49-58
    • /
    • 2008
  • Resonance doublets including O VI 1032, 1038, NV 1239, 1243 and C IV 1548, 1551 constitute prominent emission lines in symbiotic stars and planetary nebulae. Spectroscopic studies of symbiotic stars and planetary nebulae from UV space telescopes show various line ratios of these doublets deviating from the theoretical ratio of 2:1. Using a Monte Carlo technique, we investigate the collisional de-excitation effect in these emission nebulae. We consider an emission nebula around the hot component of a symbiotic star characterized by the collisional de-excitation probability $p_{coll}\;{\sim}\;10^{-3}\;-\;10^{-4}$ per each resonance scattering, and the line center optical depths for major resonance doublets in the range ${\tau}_0\;{\sim}\;10^2\;-\;10^5$. We find that various line ratios are obtained when the product $p_{coll}{\tau}_0$ is of order unity. Our Monte Carlo calculations show that the flux ratio can be approximately fitted by a linear function of ${\log}{\tau}_0$ when ${\tau}_0p_{coll}\;{\sim}\;1$. It is briefly discussed that this corresponds to the range relevant to the emission nebulae of symbiotic stars.

Effect of People Moving near Short-Range Indoor Propagation Links at 2.45 GHz

  • Kara Ali;Bertoni Henry L.
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.286-289
    • /
    • 2006
  • Measurement results are presented for the effects of people moving near and across short-range indoor propagation links at 2.45 GHz (ISM band). Excess loss due to scattering and blockage by human bodies in the vicinity of one terminal were measured for different radio links in an office environment. Statistics on fades due to human body motion are given. Polarization coupling (depolarization) for various radio links was measured, and correlation of polarization components is discussed as a basis for using polarization diversity reception in short-range indoor systems.

Far-ultraviolet study of the GSH006-15+7: A local Galactic supershell

  • Jo, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2014
  • GSH 006-15+7 is a Milky Way supershell discovered by Moss et al. (2012). This supershell shows large shell-like structures in H I velocity maps. We have analyzed FUV emission for the supershell regions based on the FIMS and GALEX observations. Bright FUV flux at the boundaries of the supershell is mostly originated from dust scattering of FUV photons by dust clouds which was also observed at the boundaries of the supershell. We could find the distance to the supershell can be closer more than 30% compared with the distance of 1500 pc suggested by Moss et al. (2012) from the dust scattering simulation. And we also found the albedo and the phase function asymmetry factor of interstellar grains were 0.30 and 0.40, respectively. The confidence range for the albedo covers the theoretical value of 0.40, but g-factor is rather smaller than the theoretical value of 0.65. The small g-factor might mean the environment of turbulent ISM of the supershell. Meanwhile, the excess of C IV and X-ray emissions in the inside of the supershell can support the existence of hot gas and cooling in the supershell. And the C IV and X-ray emissions are monotonically decrease as away from the center of the SNR. This indicates the size of the hot bubble has considerably shrunk. We applied a simple simulation model to the PDR candidate region of the lower part of the supershell and obtained a H2 column density N(H2) = 1017.0-18.0 cm-2 and total hydrogen density nH ${\geq}$ 10 cm-3. This result shows the PDR candidate region represents a transition region from the warm phase to the cool phase in the PDR.

  • PDF