• Title/Summary/Keyword: ISM: molecules, kinematics and dynamics

Search Result 4, Processing Time 0.019 seconds

HCN(1-0) OBSERVATIONS OF STARLESS CORES

  • SOHN J,;LEE C, W,;LEE H, M.;PARK Y.-S.;MYERS P. C.;LEE Y.;TAFALLA M.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.261-263
    • /
    • 2004
  • We present a progress report on HCN(1-0) line observations toward starless cores to probe inward motions. We have made a single pointing survey toward the central regions of 85 starless cores and performed mapping observations of 6 infall candidate starless cores. The distributions of the velocity difference between HCN(1-0) hyperfine lines and the optically thin tracer $N_2H^+$(1-0) are significantly skewed to the blue, meaning that HCN(1-0) frequently detects inward motions. Their skewness to the blue is even greater than that of CS(2-1) Lee et al., possibly implying more infall occurrence than CS(1-0). We identify 19 infall candidates by using several characteristics illustrating spectral infall asymmetry seen in HCN(1-0) hyperfine lines, CS(3-2), CS(2-1), $DCO^+(2-1)$ and $N_2H^+$ observations. The HCN(1-0) F(O-l) with the least optical depth usually shows a similar intensity distribution to that of $N_2H^+$ which closely traces the density distribution of the cores, indicating that HCN(1-0) is less chemically affected and so believed to reflect kinematics occurring in rather inner regions of the cores. Detailed radiative transfer model fits of the spectra are underway to analyze central infall kinematics in starless cores.

MOLECULAR LINE OBSERVATION TOWARD POLARIS FLARE

  • Chi Seung-Youp;Park Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • In an attempt to investigate star formation activity and statistical properties of clumps of high Galactic latitude clouds (HLCs), we mapped the Polaris Flare region, PF121.3+25.5, in $^{12}CO\;and\;^{13}CO$ J = 1 - 0 using SRAO 6-m telescope and also observed its 12 $^{13}CO$ peak positions in CS J = 2 - 1 with TRAO 14-m telescope. $^{13}CO$ integrated intensity map shows clearly its clumpy structure and the locations of clumps well agree with $^{12}CO$morphology. CS line is not detected toward the 12 $^{13}CO$ peak positions, so we can conclude there are no dense $(\sim10^4\;cm^{-3})$ in this region. We decomposed 105 clumps from $^{13}CO$ map using GAUSSCLUMPS algorithm. The mass of clumps ranges from $7.8\;M_{\odot}\;to\;7.4{\times}10^{-2}\;M_{\odot}$ with a total mass of $66.4\;M_{\odot}$ The mass spectrum follows a power law, dN/dM ${\propto}\;M^{-\alpha}$ with a power index of ${\alpha}=1.91{\pm}0.13$. The virial masses of clumps are in the range of $10{\sim}100M_{LTE}$ and so these clumps are considered to be gravitationally unbound.

AN UPDATE ON THE MOPRA SOUTHERN GALACTIC PLANE CO SURVEY

  • BRAIDING, CATHERINE;BURTON, MICHAEL G.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.103-105
    • /
    • 2015
  • The 22 m diameter Mopra telescope in Australia is being used to undertake an improved survey of the CO J = 1-0 line at 3mm along the 4th quadrant of the Galaxy, achieving an order of magnitude better spatial and spectral resolution (i.e. 0.6 and 0.1 km/s) than the Dame et al. (2001) survey that is publically available for the Southern Galactic plane. Furthermore, the Mopra CO survey includes the four principal isotopologues of the CO molecule (i.e. $^{12}CO$, $^{13}CO$, $C^{18}O$ and $C^{17}O$). The survey makes use of an 8 GHz-wide spectrometer and a fast mode of on-the-fly mapping developed for the Mopra telescope, where the cycle time has been reduced to just 1/4 of a second. 38 square degrees of the Galaxy, from $l=306-344^{\circ}$, $b=0{\pm}5^{\circ}$ have currently been surveyed, together with additional 9 sq. deg. regions around the Carina complex and the Central Molecular Zone. We present new results from the survey (see also Burton et al., 2013, 2014). The Mopra CO data are being made publically available as they are published; for the latest release see the project website at www.phys.unsw.edu.au/mopraco.

TWO MOLECULAR CLOUDS WITH ANOMALOUS VELOCITIES IN THE GALACTIC ANTICENTER

  • Lee, Youngung;Kim, Young Sik;Kim, Hyung-Goo;Jung, Jae-Hoon;Yim, In-Sung;Kang, Hyunwoo;Lee, Changhoon;Kim, Bong-Gyu;Kim, Kwang-Tae
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.319-325
    • /
    • 2014
  • We map two molecular clouds located in the exact anticenter region emitting in the (J = 1-0) transition of $^{12}CO$ and $^{13}CO$ using the 3-mm SIS mixer receiver on the 14-m radio telescope at Taeduk Radio Astronomy Observatory. The target clouds with anomalous velocities of $V_{LSR}{\sim}-20km\;s^{-1}$ are distinguished from other clouds in this direction. In addition, they are located in the interarm region between the Orion Arm and the Perseus Arm. Sizes of the clouds are estimated to be about 8.6 and 10.8 pc, respectively. The total mass is estimated to be about $4{\times}10^3$ $M_{\odot}$ using CO luminosity of the clouds. Several cores are detected, but no sign of star formation is found according to the IRAS point sources. Their larger linewidths, anomalous velocities, and their location at the interarm region make these clouds more distinguished, though their physical properties are similar to the dark clouds in the solar neighborhood in terms of mass and size.