• Title/Summary/Keyword: ISM: lines and bands

Search Result 12, Processing Time 0.028 seconds

A SURVEY OF INTERSTELLAR LINES: RADIAL VELOCITY PROFILES AND EQUIVALENT WIDTHS

  • GALAZUTDINOV GAZINUR
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.215-218
    • /
    • 2005
  • An atlas of high resolution (${\lambda}/{\Delta}{\lambda}$=45,000) profiles of interstellar atomic lines of K I (7665, 7699 ${\AA}$), Na I (D 1, D2), Ca II (H, K), Ca I (4227 ${\AA}$), molecular structures of CH, CH+, CN and the major diffuse interstellar bands at 5780 and 5797 ${\AA}$ based on ${\~}$300 echelle spectra of ${\~}$200 OB stars is presented. Relationships between the reddenings, distances and equivalent widths of NaI, CaII, KI, CH, CH+, CN and diffuse bands are discussed. The equivalent width of K I (7699 ${\AA}$) as well as of CH4300 ${\AA}$ / correlate very tightly with E(B- V) in contrast to the features of neutral sodium, ionized calcium and the molecular ion CH+. The equivalent widths of the Hand K lines of Call grow with distance at a rate ${\~}$250m${\AA}$ per 1 kpc. A similar relation for NaI is much less tight. The strengths of neutral potassium lines, molecular features and diffuse interstellar bands do not correlate practically with distance. These facts suggest that ionized calcium fills the interstellar space quite homogeneously while the other carriers mentioned above, especially K I, CH and these of diffuse bands occupy more and more compact volumes, also filled with dust grains. Apparently the carriers of narrow diffuse bands are spatially correlated with simple molecules and dust grains - all abundant in the so-called 'zeta' type clouds. The same environment seems to be hostile to the carriers of broad diffuse interstellar bands (DIEs) (like 5780 or 6284) and -to a certain extent - also to CaII, NaI and CH+.

PROCESSING OF INTERSTELLAR MEDIUM AS DIVULGED BY AKARI

  • Onaka, Takashi;Mori, Tamami I.;Ohsawa, Ryou;Sakon, Itsuki;Bell, Aaron C.;Hammonds, Mark;Shimonishi, Takashi;Ishihara, Daisuke;Kaneda, Hidehiro;Okada, Yoko;Tanaka, Masahiro
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.77-81
    • /
    • 2017
  • A wide spectral coverage from near-infrared (NIR) to far-infrared (FIR) of AKARI both for imaging and spectroscopy enables us to efficiently study the emission from gas and dust in the interstellar medium (ISM). In particular, the Infrared Camera (IRC) onboard AKARI offers a unique opportunity to carry out sensitive spectroscopy in the NIR ($2-5{\mu}m$) for the first time from a spaceborn telescope. This spectral range contains a number of important dust bands and gas lines, such as the aromatic and aliphatic emission bands at 3.3 and $3.4-3.5{\mu}m$, $H_2O$ and $CO_2$ ices at 3.0 and $4.3{\mu}m$, CO, $H_2$, and H I gas emission lines. In this paper we concentrate on the aromatic and aliphatic emission and ice absorption features. The balance between dust supply and destruction suggests significant dust processing taking place as well as dust formation in the ISM. Detailed analysis of the aromatic and aliphatic bands of AKARI observations for a number of H ii regions and H ii region-like objects suggests processing of carbonaceous dust in the ISM. The ice formation process can also be studied with IRC NIR spectroscopy efficiently. In this review, dust processing in the ISM divulged by recent analysis of AKARI data is discussed.

INFRARED SUPERNOVA REMNANTS IN THE LARGE MAGELLANIC CLOUD

  • Seok, J.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.231-234
    • /
    • 2012
  • We present preliminary results of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) seen by AKARI as well as Spitzer. By examining the AKARI LMC survey and the Spitzer data, we have searched for IR counterparts to 45 known SNRs in the LMC and could identify 28 SNRs with associated IR emission. 13 SNRs among them are newly detected in IR bands. For the entire IR SNRs, we make a catalog containing general information and the AKARI and/or Spitzer fluxes. Using the catalog, their IR colors and the possible correlation of the IR fluxes with the X-ray fluxes are examined. For some interesting SNRs, we have performed NIR spectroscopy with AKARI. An aromatic feature at $3.3{\mu}m$ can be identified in LMC SNR N49. We investigate the characteristics of the IR features and discuss the PAH mission mechanism in SNRs.

THE FORMATION OF THE DOUBLE GAUSSIAN LINE PROFILES OF THE SYMBIOTIC STAR AG PEGASI

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • We analyze high dispersion emission lines of the symbiotic nova AG Pegasi, observed in 1998, 2001, and 2002. The Hα and Hβ lines show three components, two narrow and one underlying broad line components, but most other lines, such as HI, HeI, and HeII lines, show two blue- and red-shifted components only. A recent study by Lee & Hyung (2018) suggested that the double Gaussian lines emitted from a bipolar conical shell are likely to form Raman scattering lines observed in 1998. In this study, we show that the bipolar cone with an opening angle of 74°, which expands at a velocity of 70 km s-1 along the polar axis of the white dwarf, can accommodate the observed double line profiles in 1998, 2001, and 2002. We conclude that the emission zone of the bipolar conical shell, which formed along the bipolar axis of the white dwarf due to the collimation by the accretion disk, is responsible for the double Gaussian profiles.

HIGHLY EXCITED CO LINES IN ACTIVE GALAXIES BOTH IN ABSORPTION AND IN EMISSION

  • Nakagawa, Takao;Shirahata, Mai;Usuda, Tomonori
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.175-177
    • /
    • 2017
  • In order to reveal physical conditions of molecular gas in active galaxies (active galaxies mean both starbursts and AGNs in this paper), we carried out systematic observations (R = 19 ~ 120) of CO fundamental band at $4.7{\mu}m$ in absorption with AKARI. We also made follow-up CO absorption observations at higher spectral resolution (R = 5000 ~ 1000) with Subaru. Recently, Herschel made extensive observations of highly-excited CO lines in emission in the far-infrared. The two data sets (absorption and emission) sometimes provide us with apparently inconsistent results. One case is starburst galaxies: Subaru observations showed low temperature of molecular gas toward the starburst NGC 253, while Herschel detected highly excited CO lines in the starburst. This suggests that warm molecular clouds are more deeply embedded than newly formed star clusters. The other case is obscured AGNs; Herschel detected highly excited CO lines in emission in nearby AGNs, while AKARI and Subaru observations showed CO absorption only in some of the obscured AGNs. This could reflect the difference of nature of molecular tori in these AGNs. We propose the combination of the absorption and emission observations as an effective tool to reveal geometry of warm molecular clouds in active galaxies.

FAR-INFRARED [C II] EMISSION FROM THE CENTRAL REGIONS OF SPIRAL GALAXIES

  • MOCHIZUKI KENJI
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.193-197
    • /
    • 2004
  • Anomalies in the far-infrared [C II] 158 ${\mu}m$ line emission observed in the central one-kiloparsec regions of spiral galaxies are reviewed. Low far-infrared intensity ratios of the [C II] line to the continuum were observed in the center of the Milky Way, because the heating ratio of the gas to the dust is reduced by the soft interstellar radiation field due to late-type stars in the Galactic bulge. In contrast, such low line-to-continuum ratios were not obtained in the center of the nearby spiral M31, in spite of its bright bulge. A comparison with numerical simulations showed that a typical column density of the neutral interstellar medium between illuminating sources at $hv {\~} 1 eV $ is $N_H {\le}10^{21}\;cm^{-2}$ in the region; the medium is translucent for photons sufficiently energetic to heat the grains but not sufficiently energetic to heat the gas. This interpretation is consistent with the combination of the extremely high [C Il]/CO J = 1-0 line intensity ratios and the low recent star-forming activity in the region; the neutral interstellar medium is not sufficiently opaque to protect the species even against the moderately intense incident UV radiation. The above results were unexpected from classical views of the [C II] emission, which was generally considered to trace intense interstellar UV radiation enhanced by active star formation.

FLUX CALIBRATION METHOD OF SLIT SPECTROMETER FOR EXTENDED SOURCES

  • Lee, Sung-Ho;Park, Soo-Jong
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.151-155
    • /
    • 2006
  • Long slit spectrometers are widely used in optical and infrared bands in astronomy. Absolute flux calibration for extended sources, however, is not straightforward, because a portion of the radiation energy from a flux calibration star is blocked by the narrow slit width. Assuming that the point spread function(PSF) of the star is circularly symmetric, we develop a robust method to extrapolate the detected stellar flux to the unobscured flux using the measured PSF along the slit-length direction. We apply this method to our long slit data and prove that the uncertainty of the absolute flux calibration is less than a few percents.

AKARI MID- TO FAR-INFRARED OBSERVATIONS OF DIFFUSE GALACTIC EMISSION

  • Sakon, I.;Onaka, T.;Mori, T.I.;Ohsawa, R.;Doi, Y.;Okada, Y.;Kaneda, H.;Ootsubo, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.213-216
    • /
    • 2012
  • We have collected dozens of mid-infrared spectra showing UIR bands from diffuse Galactic emitting regions with the AKARI's Infrared Camera (IRC) onboard AKARI, as part of the ISMGN Mission Program. The datasets cover various directions in the inner Galactic Plane ($|l|$ < 70 deg), in the outer Galactic Plane ($|l|$ > 70 deg), and in the off-Plane ($|b|$ > 2 deg). The variations in the UIR band ratios are examined in terms of the radiation environments judged from the far-infrared ($50-170{\mu}m$) spectral energy distribution (SED) made with AKARI/FIS All Sky Survey data at each slit position where mid-IR spectra were obtained. We have found that the band ratios of $6.2{\mu}m/11.2{\mu}m$ and $7.7{\mu}m/11.2{\mu}m$ toward the inner Galaxy are systematically higher than those toward the outer Galaxy and off the Galactic plane. Likely causes of the variations in properties of UIR bands in diffuse emission on a Galactic scale are discussed in this paper.

SPECTRAL EVOLUTION OF NOVAE IN THE NEAR-INFRARED BASED ON AKARI OBSERVATIONS

  • Sakon, Itsuki;Onaka, Takashi;Usui, Fumihiko;Shimamoto, Sayaka;Ohsawa, Ryou;Wada, Takehiko;Matsuhara, Hideo;Arai, Akira
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.101-103
    • /
    • 2017
  • We have carried out the near-infrared spectroscopic observations of recent classical novae (e.g., V2468Cyg, V1280Sco) within a few years from the outburst with AKARI as a part of AKARI Open Time Observing Program for Phase 3-II "Spectral Evolution of Novae in the Near-Infrared based on AKARI Observations (Proposal ID: SENNA)". The homogeneous datasets of near-infrared spectra from $2.5{\mu}m$ to $5{\mu}m$ with AKARI/IRC collected in this program are useful to infer the physical conditions of the shell formed by the ejected materials, to examine the chemical properties of the ejecta gas, and to examine the properties of dust formed in the nova ejecta.

LARGE-SCALE [OIII] AND [CII] DISTRIBUTIONS OF THE LARGE MAGELLANIC CLOUD WITH FIS-FTS

  • Takahashi, A.;Yasuda, A.;Kaneda, H.;Kawada, M.;Kiriyama, Y.;Mouri, A.;Mori, T.;Okada, Y.;Takahashi, H.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.219-220
    • /
    • 2012
  • We present the results of far-infrared spectroscopic observations of the Large Magellanic Cloud (LMC) with FIS-FTS. We covered a large area across the LMC, including 30 Doradus (30 Dor) and N44 star-forming regions, by 191 pointings in total. As a result, we detect the [OIII] and [CII] line emission as well as far-infrared dust continuum emission throughout the LMC. We find that the [OIII] emission is widely distributed around 30 Dor. The observed size of the distribution is too large to be explained by massive stars in 30 Dor, which are assumed to be enshrouded by clouds with the constant gas density estimated from the [OIII] line intensities. Therefore the surrounding structure is likely to be highly clumpy. We also find a global correlation between the [OIII] and the far-infrared continuum emission, suggesting that the gas and dust are well mixed in the highly-ionized region where the dust survives in clumpy dense clouds shielded from energetic photons. Furthermore we find that the ratios of [CII]/CO are as high as 110,000 in 30 Dor, and 45,000 even on average, while they are typically 6,000 for star-forming regions in our Galaxy. The unusually high [CII]/CO is also consistent with the picture of clumpy small dense clouds.