• Title/Summary/Keyword: ISM: fractal dimension

Search Result 3, Processing Time 0.016 seconds

FRACTAL DIMENSIONS OF INTERSTELLAR MEDIUM: I. THE MOLECULAR CLOUDS IN THE ANTIGALACTIC CENTER

  • LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.137-141
    • /
    • 2004
  • We have estimated the fractal dimension of the molecular clouds in the Antigalactic Center based on the $^{12}CO$ (J = 1- 0) and $^{13}CO$ (J = 1- 0) database obtained using the 14m telescope at Taeduk Radio Astronomy Observatory. Using a developed code within IRAF, we were able to identify slice-clouds, and determined the dispersions of two spatial coordinates as well as perimeters and areas. The fractal dimension of the target region was estimated to be D = 1.34 for low resolution $^{12}CO$ (J = 1 - 0) database, and D = 1.4 for higher resolution $^{12}CO$ (J = 1 - 0) and $^{13}CO$ (J = 1 - 0) database, where $P {\propto} A^{D/2}$. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Our database with higher resolution of 1 arcminute, which is corresponding to 0.2 pc at a distance of 1.1 kpc, gives us the same estimate of fractal dimension to that of local dark clouds. Fractal dimension is apparently invariant when varying the threshold temperatures applied to cloud identification. According to the dispersion pattern of longitudes and latitudes of identified slice-clouds, there is no preference of elongation direction.

FRACTAL DIMENSIONS OF INTERSTELLAR MEDIUM: II. THE MOLECULAR CLOUDS ASSOCIATED WITH THE HII REGION SH 156

  • Lee, Young-Ung;Kang, Mi-Ju;Kim, Bong-Kyu;Jung, Jae-Hoon;Kim, Hyun-Goo;Yim, In-Sung;Kang, Hyung-Woo;Choi, Ji-Hoon
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.6
    • /
    • pp.157-161
    • /
    • 2008
  • We have estimated the fractal dimension of the molecular clouds associated with the Hii region Sh 156 in the Outer Galaxy. We selected the $^{12}CO$ cube data from the FCRAO CO Survey of the Outer Galaxy. Using a developed code within IRAF, we identified slice-clouds (2-dimensional clouds in velocity-channel maps) with two threshold temperatures to estimate the fractal dimension. With the threshold temperatures of 1.8 K, and 3 K, we identified 317 slice-clouds and 217 slice-clouds, respectively. There seems to be a turn-over location in fractional dimension slope around NP (area; number of pixel) = 40. The fractal dimensions was estimated to be D = $1.5\;{\sim}\;1.53$ for $NP\;{\geq}\;40$, where $P\;{\propto}\;A^{D/2}$ (P is perimeter and A is area), which is slightly larger than other results. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Fractal dimension is apparently invariant when varying the threshold temperatures applied to slice-clouds identification.

THE FRACTAL DIMENSION OF THE 𝜌 OPHIUCUS MOLECULAR CLOUD COMPLEX

  • Lee, Yongung;Li, Di;Kim, Y.S.;Jung, J.H.;Kang, H.W.;Lee, C.H.;Yim, I.S.;Kim, H.G.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.255-259
    • /
    • 2016
  • We estimate the fractal dimension of the ${\rho}$ Ophiuchus Molecular Cloud Complex, associated with star forming regions. We selected a cube (${\upsilon}$, l, b) database, obtained with J = 1-0 transition lines of $^{12}CO$ and $^{13}CO$ at a resolution of 22" using a multibeam receiver system on the 14-m telescope of the Five College Radio Astronomy Observatory. Using a code developed within IRAF, we identified slice-clouds with two threshold temperatures to estimate the fractal dimension. With threshold temperatures of 2.25 K ($3{\sigma}$) and 3.75 K ($5{\sigma}$), the fractal dimension of the target cloud is estimated to be D = 1.52-1.54, where $P{\propto}A^{D/2}$, which is larger than previous results. We suggest that the sampling rate (spatial resolution) of observed data must be an important parameter when estimating the fractal dimension, and that narrower or wider dispersion around an arbitrary fit line and the intercepts at NP = 100 should be checked whether they relate to firms noise level or characteristic structure of the target cloud. This issue could be investigated by analysing several high resolution databases with different quality (low or moderate sensitivity).