• Title/Summary/Keyword: ISM: $H_2$

Search Result 91, Processing Time 0.023 seconds

Far-ultraviolet study of the GSH006-15+7: A local Galactic supershell

  • Jo, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2014
  • GSH 006-15+7 is a Milky Way supershell discovered by Moss et al. (2012). This supershell shows large shell-like structures in H I velocity maps. We have analyzed FUV emission for the supershell regions based on the FIMS and GALEX observations. Bright FUV flux at the boundaries of the supershell is mostly originated from dust scattering of FUV photons by dust clouds which was also observed at the boundaries of the supershell. We could find the distance to the supershell can be closer more than 30% compared with the distance of 1500 pc suggested by Moss et al. (2012) from the dust scattering simulation. And we also found the albedo and the phase function asymmetry factor of interstellar grains were 0.30 and 0.40, respectively. The confidence range for the albedo covers the theoretical value of 0.40, but g-factor is rather smaller than the theoretical value of 0.65. The small g-factor might mean the environment of turbulent ISM of the supershell. Meanwhile, the excess of C IV and X-ray emissions in the inside of the supershell can support the existence of hot gas and cooling in the supershell. And the C IV and X-ray emissions are monotonically decrease as away from the center of the SNR. This indicates the size of the hot bubble has considerably shrunk. We applied a simple simulation model to the PDR candidate region of the lower part of the supershell and obtained a H2 column density N(H2) = 1017.0-18.0 cm-2 and total hydrogen density nH ${\geq}$ 10 cm-3. This result shows the PDR candidate region represents a transition region from the warm phase to the cool phase in the PDR.

  • PDF

THE CENTRAL REGION OF THE BARRED SPIRAL GALAXY NGC 1097 PROBED BY AKARI NEAR-INFRARED SPECTROSCOPY

  • Kondo, T.;Kaneda, H.;Oyabu, S.;Ishihara, D.;Mori, T.;Yamagishi, M.;Onaka, T.;Sakon, I.;Suzuki, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.257-258
    • /
    • 2012
  • With AKARI, we carried out near-infrared spectroscopy of the nearby barred spiral galaxy, NGC 1097, categorized as Seyfert 1 with a circumnuclear starburst ring. Our observations mapped the galactic center region. As a result, we obtain the spatial distributions of the polycyclic aromatic hydrocarbon $3.3{\mu}m$ and the aliphatic hydrocarbon $3.4-3.6{\mu}m$ emission. The former is detected from all the observed regions and the latter is enhanced near the bar connecting the ring with the nucleus. In addition, we detect absorption features due to $H_2O$ ice and CO/SiO at the ring and the galactic center, while we detect the hydrogen recombination line $Br{\alpha}$ only from the ring. Hence the observed spectra change dramatically within the central 1 kpc region.

2 - 4 ㎛ Spectroscopy of Red Point Sources in the Galactic Center

  • Jang, DaJeong;An, Deokkeun;Sellgren, Kris;Ramirez, Solange V.;Boogert, Adwin;Geballe, Tom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.49.2-49.2
    • /
    • 2019
  • We present results from our long-term observing campaign, using the NASA IRTF at Maunakea, to obtain 2 - 4 ㎛ spectra of 118 red point sources in the line of sight to the Galactic Center (GC). Our sample is largely composed of point sources selected from near- and mid-infrared photometry, but also includes a number of massive young stellar objects. Many of these sources show high foreground extinction as shown by deep 3.4 ㎛ aliphatic hydrocarbon absorption feature, which is a characteristic of the diffuse ISM and comes from the long line of sight through the diffuse medium toward the Central Molecular Zone (CMZ), the central 300 pc region of the GC. The deep 3.1 ㎛ H2O ice absorption band coming from the local, dense material in the GC CMZ suggests that most sources are likely located in the GC CMZ. A few of these sources show weak CCH3OH ice absorption at 3.535 ㎛, which can provide a strong constraint on the CCH3OH ice formation in the unique environment of the CMZ. From the best-fitting models, the optical depths of these features are determined and used to generate a well-rounded view of the ice composition across the GC CMZ and the spectral characteristics of massive YSOs in the GC.

  • PDF

A STUDY OF DWARF GALAXIES EMBEDDED IN A LARGE-SCALE Hɪ RING IN THE LEO I GROUP

  • KIM, MYO JIN;CHUNG, AEREE;LEE, JONG CHUL;LIM, SUNGSOON;KIM, MINJIN;KO, JONGWAN;LEE, JOON HYEOP;YANG, SOUNG-CHUL;LEE, HYE-RAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.517-519
    • /
    • 2015
  • A large-scale neutral hydrogen ($H\small{I}$) ring serendipitously found in the Leo I galaxy group is 200 kpc in diameter with $M_{H\small{I}}{\sim}1.67{\times}10^9M_{\odot}$, unique in size in the Local Universe. It is still under debate where this $H\small{I}$ ring originated - whether it has formed out of the gas remaining after the formation of a galaxy group (primordial origin) or been stripped during galaxy-galaxy interactions (tidal origin). We are investigating the optical and $H\small{I}$ gas properties of the dwarf galaxies located within the gas ring in order to probe its formation mechanism. In this work, we present the photometric properties of the dwarfs inside the ring using the CFHT MegaCam $u^{\ast}$, $g^{\prime}$, $r^{\prime}$ and $i^{\prime}$-band data. We discuss the origin of the gas ring based on the stellar age and metal abundance of dwarf galaxies contained within it.

NEAR-INFRARED SPECTROSCOPY OF CO RO-VIBRATIONAL ABSORPTION TOWARD HEAVILY OBSCURED AGNs

  • Shirahata, Mai;Nakagawa, Takao;Oyabu, Shinki;Usuda, Tomonori
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.169-173
    • /
    • 2017
  • We provide a new physical insight on the hot molecular clouds near the nucleus of the obscured AGNs. We performed near-infrared spectroscopic observations of heavily obscured AGNs in order to reveal physical characteristics of molecular clouds, especially focused on the CO fundamental ro-vibrational absorption around $4.7{\mu}m$. We have made systematic moderate-resolution spectroscopic observations toward 30 representative (U)LIRGs using the AKARI/IRC, and some of the ULIRGs showed the strong CO absorption feature. For three bright (U)LIRGs that show a steep red continuum with the deep CO absorption feature, IRAS 08572+3915, UGC 05101, and IRAS 01250+2832, we have also made high-resolution spectroscopic observations using the Subaru/IRCS. We have successfully detected many absorption lines up to highly excited rotational levels, and these lines are very deep and extremely broad. The derived physical conditions of molecular clouds are extreme; the gas temperature is as high as several 100 to a 1000 K, the $H_2$ column density is larger than $10^{22}cm^{-2}$, and the gas density is greater than $10^7cm^{-3}$. Such hot and dense molecular clouds must exist around the central engine of the AGN.

A Study on Development of Industrial Engine Monitoring System Using Smart Phone Application (스마트폰 앱을 이용한 산업용 엔진의 모니터링 시스템 개발에 관한 연구)

  • Jeong, C.S.;Kim, Y.S.;Jeong, Y.M.;Kho, J.H.;Jeong, K.S.;Lee, H.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2013
  • In this study, a wire/wireless communication system transmitting the operation data of engine from the ER (Engine Room) to the engine controller of ECR(Engine Control Room) has been developed through the communication of ISM(Industrial Science Medical) Band for the test operation environment improvement of medium speed engine. This wire/wireless communication system is composed of the RTU (Remote Terminal Unit) gathering and transmitting engine data as well as the MCU (Master Control Unit) receiving engine status information from the RTU to be sent to the engine controller (PLC). Through this study, a trial product of RTU and MCU has been manufactured. A test bench that has made temperature, pressure and pick-up sensor into a module for the local test of prototype was produced a test bench. In addition, at the same time save the data to a Web server and the smart phone real-time monitoring system has been developed using Wi-Fi communications. The ultimate objective of this study is to develop a wireless smart phone monitoring system of engine for the operator of engine to be able to monitor and control engine status even from the outside of engine room and control room based on this study.

NEAR- TO MID-INFRARED SLIT SPECTROSCOPIC OBSERVATIONS OF THE UNIDENTIFIED INFRARED BANDS IN THE LARGE MAGELLANIC CLOUD

  • Mori, T.I.;Sakon, I.;Onaka, T.;Umehata, H.;Kaneda, H.;Ohsawa, R.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.209-212
    • /
    • 2012
  • We present the results of the near-infrared (NIR) to mid-infrared (MIR) slit spectroscopic observations of the diffuse emission toward nine positions in the nearby irregular galaxy Large Magellanic Cloud (LMC) with the Infrared Camera (IRC) on board AKARI. The unique characteristic of AKARI/IRC provides a great opportunity to analyze variations in the unidentified infrared (UIR) bands based on continuous spectra from 2.5 to $13.4{\mu}m$ of the same slit area. The observed variation of $I_{3.3}/I_{11.3}$ suggests destruction of small-sized UIR band carriers, polycyclic aromatic hydrocarbons (PAHs) in harsh environments. This result demonstrates that the UIR $3.3{\mu}m$ band provides us powerful information on the excitation conditions and/or the size distribution of PAHs, which is of importance for understanding the evolutionary process of hydrocarbon grains in the Universe. It also suggests a new diagnostic diagram of two band ratios, such as $I_{3.3}/I_{11.3}$ versus $I_{7.7}/I_{11.3}$, for the interstellar radiation conditions. We discuss on the applicability of the diagnostic diagram to other astronomical objects, comparing the LMC results with those observed in other galaxies such as NGC 6946, NGC 1313, and M51.

THE PROCESSING OF CLUMPY MOLECULAR GAS AND STAR FORMATION IN THE GALACTIC CENTER

  • LIU, HAUYU BAOBAB;MINH, YOUNG CHOL;MILLS, ELISABETH
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.133-137
    • /
    • 2015
  • The Galactic center uniquely provides opportunities to resolve how star clusters form in neutral gas overdensities engulfed in a large-scale accretion flow. We have performed sensitive Green Bank 100m Telescope (GBT), Karl G. Jansky Very Large Array (JVLA), and Submillimeter Array (SMA) mapping observations of molecular gas and thermal dust emission surrounding the Galaxy's supermassive black hole (SMBH) Sgr $A^{\ast}$. We resolved several molecular gas streams orbiting the center on ${\gtrsim}10$ pc scales. Some of these gas streams appear connected to the well-known 2-4 pc scale molecular circumnuclear disk (CND). The CND may be the tidally trapped inner part of the large-scale accretion flow, which incorporates inflow via exterior gas filaments/arms, and ultimately feeds gas toward Sgr $A^{\ast}$. Our high resolution GBT+JVLA $NH_3$ images and SMA+JCMT 0.86 mm dust continuum image consistently reveal abundant dense molecular clumps in this region. These gas clumps are characterized by ${\gtrsim}100$ times higher virial masses than the derived molecular gas masses based on 0.86 mm dust continuum emission. In addition, Class I $CH_3OH$ masers and some $H_2O$ masers are observed to be well associated with the dense clumps. We propose that the resolved gas clumps may be pressurized gas reservoirs for feeding the formation of 1-10 solar-mass stars. These sources may be the most promising candidates for ALMA to probe the process of high-mass star-formation in the Galactic center.

Conception and Modeling of a Novel Small Cubic Antenna Design for WSN

  • Gahgouh Salem;Ragad Hedi;Gharsallah Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This paper presents a novel miniaturized 3-D cubic antenna for use in wireless sensor network (WSN) application. The geometry of this antenna is designed as a cube including a meander dipole antenna. A truly omnidirectional pattern is produced by this antenna in both E-plane and H-plane, which allows for non-intermittent communication that is orientation independent. The operating frequency lies in the ISM band (centered in 2.45 GHz). The dimensions of this ultra-compact cubic antenna are 1.25*1.12*1cm3 which features a length dimension λ/11. The coefficient which presents the overall antenna structure is Ka=0.44. The cubic shape of the antenna is allowing for smart packaging, as sensor equipment may be easily integrated into the cube hallow interior. The major constraint of WSN is the energy consumption. The power consumption of radio communication unit is relatively high. So it is necessary to design an antenna which improves the energy efficiency. The parameters considered in this work are the resonant frequency, return loss, efficiency, bandwidth, radiation pattern, gain and the electromagnetic field of the proposed antenna. The specificity of this geometry is that its size is relatively small with an excellent gain and efficiency compared to previously structures (reported in the literature). All results of the simulations were performed by CST Microwave Studio simulation software and validated with HFSS. We used Advanced Design System (ADS) to validate the equivalent scheme of our conception. Input here the part of summary.

Optical spectroscopy of LMC SNRs to reveal the origin of [P II] knots

  • Aliste C., Rommy L.S.E.;Koo, Bon-Chul;Seok, Ji Yeon;Lee, Yong-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.65.2-66
    • /
    • 2021
  • Observational studies of supernova (SN) feedback are limited. In our galaxy, most supernova remnants (SNRs) are located in the Galactic plane, so there is contamination from foreground/background sources. SNRs located in other galaxies are too far, so we cannot study them in detail. The Large Magellanic Cloud (LMC) is a unique place to study the SN feedback due to their proximity, which makes possible to study the structure of individual SNRs in some detail together with their environment. Recently, we carried out a systematic study of 13 LMC SNRs using [P II] (1.189 ㎛) and [Fe II] (1.257 ㎛) narrowband imaging with SIRIUS/IRSF, four SNRs (SN 1987A, N158A, N157B and N206), show [P II]/[Fe II] ratio much higher than the cosmic abundance. While the high ratio of SN 1987A could be due to enhanced abundance in SN ejecta, we do not have a clear explanation for the other cases. We investigate the [P II] knots found in SNRs N206, N157B and N158A, using optical spectra obtained last November with GMOS-S mounted on Gemini-South telescope. We detected several emission lines (e.g., H I, [O I], He I, [O III], [N II] and [S II]) that are present in all three SNRs, among other lines that are only found in some of them (e.g., [Ne III], [Fe III] and [Fe II]). Various line ratios are measured from the three SNRs, which indicate that the ratios of N157B tend to differ from those of other two SNRs. We will use the abundances of He and N (from the detection of [N II] and He I emission lines), together with velocity measurements to tell whether the origin of the [P II] knots are SN ejecta or CSM/ISM. For this purpose we have built a family of radiative shock with self-consistent pre-ionization using MAPPINGS 5.1.18, with shock velocities in the range of 100 to 475 km/s. We will compare the observed and modeled line fluxes for different depletion factors.

  • PDF