• Title/Summary/Keyword: ISI Channel

Search Result 257, Processing Time 0.024 seconds

A Study on Hamming Codes for Mitigating ISI on the Diffusion-based Molecular Communication Channel (확산기반 분자통신 채널에서 ISI 완화를 위한 해밍 부호에 관한 연구)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this paper, in order to mitigate ISI(inter-symbol interference) in a diffusion-based molecular communication channel, an ISI Hamming code is proposed in which ISI characteristics are applied to a channel decoding algorithm. In order to prove the bit error rate performance of the proposed channel code, the bit error rate performance of the major channel codes applied to the molecular communication channel with ISI was compared and analyzed through simulation. From the simulation results, it can be seen that the bit error rate performance of the ISI Hamming code is the best when the number of radiated molecules is less than or equal to 1100. In addition, when the number of transmitted molecules is M=1000, the decoding method of the ISI Hamming code proposed in this paper has improved the bit error rate of approximately 5.9×10-5 compared to the Hamming code using only soft values. Compared with the ISI-mitigating channel code, which is effective for removing ISI in the molecular communication channel, the ISI Hamming code proposed in this paper is the most advantageous in a channel environment where the number of transmitted molecules is not big (M<1100). And we can see that the ISI-mitigating channel code is more advantageous when the number of transmitted molecules is large(M>1100).

Channel Estimation of MIMO-OFDM System with ISI (ISI가 존재하는 MIMO-OFDM 시스템의 채널 추정)

  • Ha Jeong-Woo;Lee Mi-Jin;Byon Kun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.378-381
    • /
    • 2006
  • This paper proposes the method of a channel estimation for MIMO-OFDM with ISI. The proposed method uses a new special training sequence to obtain a constant PAR in OFDM and to remove the effect of ISI on channel estimation. Using this training sequence, we are able to avoid a singular problem in matrix. As a result of simulation, we are able to assure that the proposed system inclosed the performance in MSE of estimated channel by more than 30dB than a conventional method if SNR is high.

  • PDF

A Study on the Efficient Concatenated Code on the Diffusion-based Molecular Communication Channel (확산기반 분자통신 채널에 효율적인 직렬 연결 부호에 관한 연구)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.230-236
    • /
    • 2022
  • In this paper, we propose an efficient concatenated code for both random and ISI errors on diffusion-based molecular communication channels. The proposed concatenated code was constructed by combining the ISI-mitigating code designed for ISI mitigation and the ISI-Hamming code strong against random errors, and the BER(bit error rate) performance was analyzed through simulation. In the case of the above M=1,200 channel environment, it was found that the error rate performance of the concatenated code follows the error rate performance of the ISI-mitigating code, which is strong against ISI, and follows the error rate performance of the ISI-Hamming code, which is strong against random errors, in the channel environment below M=600. In M=600~1,200, the concatenated code shows the best error rate performance among those of three codes, which is analyzed because it can correct both random errors and errors caused by ISI. In the following cases of below M=800, it can be seen that the error rate of the concatenated code and the ISI-mitigating code shows an error rate difference of about 1.0×10-1 on average.

A Study on Channel Equalization Technique for High-Speed Processing on DSRC System (DSRC 시스템에서의 고속처리를 위한 채널등화기법에 대한 연구)

  • Sung Tae-Kyung;Choi Jong-Ho;Cho Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.109-116
    • /
    • 2004
  • The signal in wireless multi-path channel is affected by fading and ISI because of high data rate transmission, so the signal has the high error rate. The present modulation and demodulation method of DSRC system can not expect sufficient for providing data service over 1 Mbps, so the channel equalization and advanced modulation and demodulation methods are required. OFDM method is generally Inon as an effective technique for high data rate transmission system, since it can prevent ISI by inserting a guard interval. However, a guard interval longer than channel delay spread has to be used in each OFDM symbol period, thus resulting a considerable loss in the efficiency of channel utilization. Therefore the equalizer is necessary to cancel ISI to accommodate advanced ISI service with higher bit rate and longer channel delay spread condition. In this thesis, the channel equalizer for the OFDM-DSRC system was designed and its performance in a multi-path fading environment was evaluated with computer simulation. As a result, the performance of Pseudo LMMSE equalizer for the OFDM-DSRC has been improved comparing with LS equalizer at higher bit rate transmission system.

  • PDF

Performance of Iterative Equalizer for ISI channel

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.141-144
    • /
    • 2020
  • Iterative decision feedback equalizer (IDFE) is a recursive equalization technique that can help to achieve an additional performance gain for the system by combining iterative channel decoding and interference cancellation. In a single carrier-based system, the intersymbol interference (ISI) is a critical problem that must be resolved since it causes frequency selective fading. Based on the idea of sharing the estimated information in the process of iteration, IDFE is considered as an efficient solution to improve the robustness of the system performance on the ISI channel. In this paper, the IDFE is applied on single carrier FDMA (SC-FDMA) system to evaluate the performance under ISI channel. The simulation results illustrate that IDFE helps to improve the performance of the SC-FDMA system, especially with long delay spread channels.

An OFDM Receiver Scheme for Multipath Environment with Delay Profile over the Guard Interval (가드인터벌을 초월하는 지연프로필의 멀티패스채널에 적합한 OFDM수신시스템)

  • 주창복
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.66-72
    • /
    • 2003
  • In the present paper some fundamentals about exceeding the guard interval of an OFDM system is going to discuss and will introduce method to cancel a ISI and ICI effects. In this paper, the performance characteristics of robust OFDM receiving system algorithm that is composed of a channel estimator using recursive least square(RLS) algorithm in time domain and of a ISI and ICI replica and subtracter using the channel coefficients are presented. By computer simulation method, the effect of suppression of ISI and ICI is demonstrated and compared the BER performance with a conventional 1-tap equalized system. Especially the presented scheme improves the BER performance at low SNRs more or so compared with the conventional one-tap equalized receiving configuration.

  • PDF

A Comparative Studies of Channel Shortening Techniques for OFDM System (OFDM시스템을 위한 채널 shortening기법들의 비교)

  • Kim, Jae-kwon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.262-266
    • /
    • 2013
  • In OFDM system, cyclic prefix (CP) is used to eliminate the inersymbol interference that is caused by the channel dispersion. However, a long CP reduces the data transmission rate. An alternative to a logn CP is the a time domain channel shortening filter at the receiver that shortens the effective channel, thus a short CP is used in spite of a long channel impulse response. In the paper, we compare a various channel shortening techniques; minimum shortened signal to noise ratio (MSSNR), minimum interblock interference (min-IBI), and minimum ISI (min-ISI).

An Adaptive Linear Channel Equalizer Using Asymmetric Transversal Filter (비대칭 필터 구조를 이용한 적응형 선형 채널 등화기)

  • Han, Jong-Young;Lim, Dong-Guk;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.830-837
    • /
    • 2005
  • ISI is caused by delay spread in the multipath channel environment. There are two kinds of channel equalizer: Linear and Non-Linear type according to the structures. In this paper, we propose an improved adaptive linear equalizer to mitigate ISI. The proposed adaptive equalizer is constructed by using asymmetrical Dsmvenu filter based on USE sub-optimal receiver. Asymmetrical structure of the transversal filter is realized by moving the main tap position from center to side. If this structure is used, we can divide ISI to precusor and postcusor. As a result the proposed equalizer has a larger extended compensation range than conventional adaptive linear equalizer. In computer simulation, we compare the bit error rate performance of the proposed linear equalizer with the conventional one on the S-V channel which is modeled for WB systems.

A Rake receiver for CCK wireless LAN modem based on Channel Matched Filter (CCK 무선랜 모뎀을 위한 Channel Matched Filter 기반의 RAKE 수신기)

  • Lee Yusung;Park Hyuncheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5C
    • /
    • pp.329-337
    • /
    • 2005
  • In this paper, we propose a new type of RAKE receiver for complementary code keying (CCK) codes, which is suitable for the multipath channel with large delay spread. Our proposed system is based on channel matched filter (CMF) with decision feedback equalizer (DFE) and contains codeword DFE structure. In our system, inter chip interference (ICI) and inter symbol interference (ISI) generated due to multipath environments are calculated by using detected CCK codeword. Also it uses the error correcting capability of CCK codes, and it can remove ISI and ICI at the same time.

Residual ISI cancellation and EM-based channel estimation for STBC/SFBC OFDM with insufficient cyclic prefix (불충분한 주기적 프리픽스를 갖는 STBC/SFBC OFDM 시스템을 위한 잔재 ISI 제거 기법 및 EM 기반 채널 추정 기법)

  • Won, Hui-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1154-1163
    • /
    • 2007
  • For orthogonal frequency division multiplexing (OFDM), cyclic prefix (CP) should be longer than the length of channel impulse response. In order to prevent a loss of bandwidth efficiency due to the use of a CP, residual intersymbol interference cancellation (RISIC) method has recently been developed. In this paper, we first apply the RISIC algorithm to the space-time block coded (STBC) OFDM and the space-frequency block coded (SFBC) OFDM with insufficient CP. It is shown that in the STBC OFDM, tail cancellation as well as cyclic restoration of the RISIC should be repeated. Second, we propose iterative channel estimation method for the RISIC in the STBC OFDM system with insufficient CP. Based on the expectation-maximization (EM) algorithm, the proposed estimation method exploits the extrinsic probabilities of the channel decoder iteratively. The performance of the proposed method is evaluated by computer simulation in a multipath fading environment.