• Title/Summary/Keyword: ISCST model

Search Result 27, Processing Time 0.029 seconds

Performance of ISC model-Predicting short-term concentrations around waste incinerator plant (ISC모델의 적용성 평가 - 소각장 주변지역의 단기농도예측)

  • 정상진
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.809-816
    • /
    • 2003
  • The short-term version of Industrial Source Complex Model(ISCST3) was evaluated for estimating short-term concentrations using criteria pollutant(SO$_2$, NO$_2$, CO, PM10) data from emission inventory of Young Tong area in Suwon for the year 2002. The contribution of pollutant concentration from point, line, area sources was found 21.8, 76.5 and 1.6%. Statistical parameters, such as correlation coefficient, index of agreement(IA), normalized mean square error(NMSE) and fractional bias(FB) were calculated for each pollutants. The model performance were found good for PM10(82%) and NO$_2$(69%), but poor for SO$_2$(34%) and CO(13%).

A study on the Assessment of the Predictability of the APSM (APSM의 예측능 평가에 관한 연구)

  • 박기하;윤순창
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.265-274
    • /
    • 2003
  • The Pasquill-Gifford stability category is a very important scheme of the Gaussian type dispersion model defined the complex turbulence state of the atmosphere by A grade(very unstable) to F grade(very stable). But there has been made a point out that this stability category might decrease the predictability of the model because it was each covers a broad range of stability conditions, and that they were very site specific. The APSM (Air Pollution Simulation Model) was composed of the turbulent parameters, i.e. friction velocity(${\mu}$$\_$*/), convective velocity scale($\omega$$\_$*/) and Monin-Obukhov length scale(L) for the purpose of the performance increasing on the case of the unstable atmospheric conditions. And the PDF (Probability Density Function)model was used to express the vertical dispersion characteristics and the profile method was used to calculate the turbulent characteristics. And the performance assessment was validated between APSM and EPA regulatory models(TEM, ISCST), tracer experiment results. There were very good performance results simulated by APSM than that of TEM, ISCST in the short distance (<1415 m) from the source, but increase the simulation error(%) to stand off the source in others. And there were differences in comparison with the lateral dispersion coefficient($\sigma$$\_$y/) which was represent the horizontal dispersion characteristics of a air pollutant in the atmosphere. So the different calculation method of $\sigma$$\_$y/ which was extrapolated from a different tracer experiment data might decrease the simulation performance capability. In conclusion, the air pollution simulation model showed a good capability of predict the air pollution which was composed of the turbulent parameters compared with the results of TEM and ISCST for the unstable atmospheric conditions.

Wind Tunnel Experiments for Studying Atmospheric Dispersion in the Complex Terrain II. Gaussian Modeling of Experiments in a Moutainous Area (복잡한 지형내 오염물질의 대기확산 풍동실험 I I. 산지지형 실험의 Gaussian 모델링)

  • 김영성;경남호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.145-152
    • /
    • 1995
  • Predictability of a Gaussian model, ISCST2 was assessed by scaling up wind tunnel experiments with a 1/3,000 terrain model to the real scale. Concentration profiles obtained from the flat-terrain experiment in the neutral condition were estimated to be in agreement with the calculated ones from ISCST2 in the stability class A, but the difference between the two was still large. Concentration profiles from the mountainous-terrain experiments were better fitted to the calculated ones primarily because in the experiment, concentration behind the source was raised due to the effect of a hill in the upstream side. Model prediction was improved with including the downwash effect of buildings and the hill, but overall concentration profiles were not much different from a typical Gaussian profile. While concentration profiles in the experiments were changed with local flows by varying the wind direction and the topography, those from the Gaussian modeling were mot freely changed together with these variations.

  • PDF

Development of Lagrangian Particle Dispersion Model Based on a Non-equilibrium 2.5 Level Closure Turbulence Model (비평형 2.5 난류모델을 이용한 라그란지안 입자 확산모델 개발)

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.613-623
    • /
    • 1999
  • A Lagrangian particle dispersion mode l(LPDM) coupled with the prognostic flow model based on nonequilibrium level 2.5 turbulence closure has been dcveloped to simulate the dispersion from an elevated emission source. The proposed model did not require any empirical formula or data for the turbulent statistics such as velocity variances and Lagrangian time scales since the turbulence properties for LPDM were calculated from results of the flow model. The LPDM was validated by comparing the model results against the wind tunnel tracer experiment and ISCST3 model. The calculated wind profile and turbulent velocity variances were in good agreement with those measured in the wind tunnel. The ground level concentrations along the plume centerline as well as the dispersion codfficients also showed good agreement in comparison with the wind tunnel tracer experiment. There were some discrepancies on the horizontal spread of the plume in comparison with the ISCST3 but the maximum ground level concentrations were in a good confidence range. The results of comparisons suggested that the proposed LPDM with the flow model was an effective tool to simulate the dispersion in the flow situation where the turbulent characteristics were not available in advance.

  • PDF

The Sensitivity Analysis and Modeling for the Atmospheric Dispersion of Point Source (점오염원의 대기확산에 관한 민감도 분석과 모델링)

  • 이화운;원경미;배성정
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • The sensitivity analysis of two short-term models (ISCST3, INPUFF2.5) is performed to improve the model accuracy. It appears that the sensitivities on the changes of wind speed, stack height and stack inner diameter in the near distance from source, stability and mixing height in the remote distance form source, are significant. Also the gas exit velocity, stack inner diameter, gas temperature and air temperature which affect the plume rise have some effects on the concentration values of each model within the downwind distance where final plume rise is determined. And in modeling for the atmospheric dispersion of point pollutant source INPUFF2.5 can calculate amount, trajectory of puff and concentration versus time at each receptors. So, it is compatible to analyze distribution of point pollutants concentration at modeling area.

  • PDF

Impact Analysis of Complex Odor from Pigsty by Using ISCST3 (ISCST3을 이용한 돈사의 복합악취 영향 분석)

  • Kwon, Woo-Taeg;Hong, Sang-Pyo;Lee, Woo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6602-6609
    • /
    • 2013
  • This study is expected to provide background data for establishing mitigation measures for malodor and for comparing complex odor criteria. The impact of malodor at the afflicted locations was analyzed using Industrial Source Complex Short Term 3 (ISCST3) model, which was recommended by the EPA. The Odor Emission Rates (ODR) for piglets and hogs were predicted based on the average, minimum, and maximum emission rates as classification. The forecasting result of the complex odor modelling of pigsty showed that tolerance limit was exceeded at an adjacent administration building, but tolerance limit was not surpassed at an afflicted location which was within 185m from the pigsty. The ISCST3 modelling of the satisfactory ODR for tolerance limit was accomplished at the administration building. From the prediction of this modelling, maximum emission rates based on 1hr at administration building were 10.59~52.93, 19.05~31.76, and 10.59 $OU/m^3/s/m^2$ at emission rates of 50%, 30%, and 10%. This emission rate was slightly higher than the tolerance limit of 10.00 $OU/m^3/s/m^2$. However, it was inferred that the tolerance limit could be satisfied if the emission rate of 10% was controlled.

Dispersion of Air Pollutants Dispersion and Odorous Materials in Cheon-an Second Industrial Complex (하절기 천안 제 2산업단지의 대기오염확산 및 악취물질에 관한 연구)

  • Chung, Jin-Do;Hong, Jeng-Hee;Kim, Su-Young;Kim, Jung-Tae;Choi, So-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1316-1322
    • /
    • 2006
  • The purpose of this study is to analyze the pattern distribution of the odorous compounds and air pollutants from the inventory sources in the Cheon-an second industrial complex. Twelve analysis including specified odor materials and air pollutants were concurrently measured during the month of August, 2005 to evalaute odor emission characterization in m3;or treatment facilities. Also, Concentration of air pollutants has been calculated by ISCST3 in ISC3 models. A Korean air diffusion modeling software, Air Master, was developed on a basis of diffusion theories adopted in U.S. EPA's ISC3 model to assess the air quality impact from the stacks. This investigation will be executed how large the complex pollutant sources such as industrial complex contribute to atmospheric environment and air quality of the surrounding the area as predicting by comparing and analyzing results of odorous compounds and air pollutants diffusion concentration model.

Prediction of Malodorous Landfill Substances Effect on Ambient Air Quality - A Case Study on Cheongju·Cheongwon Metropolitan Landfill - (매립지 악취가 주변 대기질에 미치는 영향 예측 - 청주청원 광역매립지 사례연구 -)

  • Lee, Sang-Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.695-705
    • /
    • 2012
  • The purpose of this study is to investigate concentration level and characteristics of malodour substances generated from landfill site in C city. Also, it is tried to predict distribution of concentration level using ISCST3 model around landfill site. From the results, it can be confirmed that twelfth-class malodour substances such as ammonia, methyl mercaptan, hydrogen sulfide, dimethyl sulfate, dimethyl disulfate, toluene, acetaldehyde, styrene, propionaldehyde, butylaldehyde, n-Valeraldehyde, xylene were generated from landfill site. The levels of the malodour substances were lower than that of permeable concentration regulated by odor control law in Korea. However, the concentration of malodour substances including methyl mercaptan, hydrogen sulfide, acetaldehyde, and propionaldehyde exceeded threshold limit value(TLV). It was seemed that these substances caused the problem of offensive odor around circumstance of landfill. The concentration of malodour substances was higher in slant than in upper part of landfill. The concentrations of malodour substances measured at night time were shown higher level than those at night time because atmospheric condition was stable at night time. It showed that the concentration of malodour substances were higher in spring. The results of atmospheric diffusion model predicted that tolerance limit level of hydrogen sulfide and methyl mercaptan was detected within nearly 5km from the boundary of landfill.

Simulation of Atmospheric Dispersion over the Yosu Area -I. Terrain Effects- (여수지역 대기확산의 수치 모사 -I. 지형의 영향-)

  • 김영성;오현선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.211-223
    • /
    • 2000
  • The atmospheric dispersion of a pollutant emitted from a hypothetical source located in the middle of the Yochon Industrial Estate was simulated by using the Regional Atmospheric Modeling System (RAMS). Four horizontally nested grids were employed: the coarsest one covered the southern part of the Korean Peninsula including Mt. Chiri and the finest one covered the Yochon Industrial Estate and the surrounding area. Wind fields were initially assumed horizontally homogeneous with a wind speed of 4m/s, the average for the Yosu area, and were developed without both external forces and diurnal changes in order to investigate the terrain-induced phenomena. Wind directions that could emphasize the terrain effects on the pollutant transport and that could carry pollutants to a highly-popluated area were selected for the dispersion study. A pollutant was released for 24hours from a grid-base volume source after a 24-h blank run for developing the wind field. The dispersion study showed that the pollutant from the present source location did not directly affect the Yosu City, but showed high concentrations at locations behind the hills 5 to 6 km away from the source according to wind directions. When the wind speed was low, close to calm condition, the pollutant was detected at upstream locations 6 to 7 km from the source. In comparison with the results from the RAMS simulation, the Industrial Source Complex Short-Term Model(ISCST3) predicted a narrow dispersion that was sensitive to the wind direction. When the wind velocity was affected by the local environment, the ISCST3 calculation using that data also gave a lop-sided result, which was different from the distribution of the pollutant reproduced by RAMS.

  • PDF

Application of Passive Sampler in Validation and Calibration of Air Dispersion Model (대기확산모델의 검정 및 보정을 위한 Passive Sampler의 활용)

  • 김선태;김주인;김성근;배장영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.170-171
    • /
    • 1999
  • 대기 중 오염물질의 확산 및 미래의 예측을 위하여 대기확산모형을 많이 사용하고 있으며, 국내에서 사용하고 있는 대기확산모형의 대부분은 미국 EPA에서 보급하는 것을 사용하고 있다. 이 중에서 최근에 많이 사용하고 있는 단기모형으로는 기간과 지형이 고려되는 ISCST3 모형을 들 수 있다. 국내 모델의 사용에 있어서 가장 중요한 문제점은 모델의 검정과 보정을 위한 data의 부재를 들 수 있다.(중략)

  • PDF