• Title/Summary/Keyword: IS-OFDM

Search Result 1,362, Processing Time 0.019 seconds

Detection Scheme Based on Gauss - Seidel Method for OTFS Systems (OTFS 시스템을 위한 Gauss - Seidel 방법 기반의 검출 기법)

  • Cha, Eunyoung;Kim, Hyeongseok;Ahn, Haesung;Kwon, Seol;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.244-247
    • /
    • 2022
  • In this paper, the performance of the decoding schemes using linear MMSE filters in the frequency and time domains and the reinforcement Gauss-Seidel algorithm for the orthogonal time frequency space (OTFS) system that can improve robustness under high-speed mobile environments are compared. The reinforcement Gauss-Seidel algorithm can improve the bit error rate performance by suppressing the noise enhancement. The simulation results show that the performance of the decoding scheme using the linear MMSE filter in the frequency domain is severely degraded due to the effect of Doppler shift as the mobile speed increases. In addition, the decoding scheme using the reinforcement Gauss-Seidel algorithm under the channel environment with 120 km/h and 500 km/h speeds outperforms the decoding schemes using linear MMSE filters in the frequency and time domains.

A study of Development of Transmission Systems for Terrestrial Single Channel Fixed 4K UHD & Mobile HD Convergence Broadcasting by Employing FEF (Future Extension Frame) Multiplexing Technique (FEF (Future Extension Frame) 다중화 기법을 이용한 지상파 단일 채널 고정 4K UHD & 이동 HD 융합방송 전송시스템 개발에 관한 연구)

  • Oh, JongGyu;Won, YongJu;Lee, JinSeop;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.310-339
    • /
    • 2015
  • In this paper, the possibility of a terrestrial fixed 4K UHD (Ultra High Definition) and mobile HD (High Definition) convergence broadcasting service through a single channel employing the FEF (Future Extension Frame) multiplexing technique in DVB (Digital Video Broadcasting)-T2 (Second Generation Terrestrial) systems is examined. The performance of such a service is also investigated. FEF multiplexing technology can be used to adjust the FFT (fast Fourier transform) and CP (cyclic prefix) size for each layer, whereas M-PLP (Multiple-Physical Layer Pipe) multiplexing technology in DVB-T2 systems cannot. The convergence broadcasting service scenario, which can provide fixed 4K UHD and mobile HD broadcasting through a single terrestrial channel, is described, and transmission requirements of the SHVC (Scalable High Efficiency Video Coding) technique are predicted. A convergence broadcasting transmission system structure is described by employing FEF and transmission technologies in DVB-T2 systems. Optimized transmission parameters are drawn to transmit 4K UHD and HD convergence broadcasting by employing a convergence broadcasting transmission structure, and the reception performance of the optimized transmission parameters under AWGN (additive white Gaussian noise), static Brazil-D, and time-varying TU (Typical Urban)-6 channels is examined using computer simulations to find the TOV (threshold of visibility). From the results, for the 6 and 8 MHz bandwidths, reliable reception of both fixed 4K UHD and mobile HD layer data can be achieved under a static fixed and very fast fading multipath channel.