• Title/Summary/Keyword: IS watershed model

Search Result 1,128, Processing Time 0.024 seconds

Framework of Watershed Management Organization Consortium for Water Environment Improvement of Small Rural Watershed (농촌 소유역 수환경 개선을 위한 유역관리 협의체 구성방안 - 함평천 사례를 중심으로 -)

  • Lee, Ki-Wan;Kim, Young-Joo;Yoon, Kwang-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.4 s.29
    • /
    • pp.59-65
    • /
    • 2005
  • Proper management of small rural watershed is important since it does affect water quality improvement of larger scale watershed. Therefore, effective small watershed management guideline including participatory program of local people is required to achieve water environment improvement. Feasibility of water quality goal, short and long-term watershed management plan and funding sources were investigated by field monitoring of Hampyungchun watershed which has characteristics of rural stream, and literature review. The relevant parties and their roles fer watershed management were identified and suggested. A hybrid model, that is mixture of government driven model and NGO model, is recommended for watershed management organization in this study.

A Study on the Inquiry-Based Water Environmental Education Model with Watershed Concept: Focusing on the ENVISION Program (유역 개념을 중심으로 한 탐구 기반의 물 환경교육 모형에 관한 연구: ENVISION 프로그램을 중심으로)

  • Lee, Du-Gon
    • Hwankyungkyoyuk
    • /
    • v.19 no.3
    • /
    • pp.150-164
    • /
    • 2006
  • This study reviewed a recently developed environmental education model 'ENVISION' and analyzed the value of the ENVISION program with environmental education(EE) perspective. Also this study proposed a prototype model of a inquiry-based water environmental education model with watershed concepts as a result of discussion of tills research. In the review of ENVISION, this research followed the theoretical framework of 'Inquiry-Based EE' that was previously proposed by the author. The ENVISION was characterized in tills research as two directions: watershed and scientific inquiry. Tills research argued that the watershed concept has a potentially very good meaning in EE because watershed enables 'holistic' view in EE area, and that the scientific inquiry in ENVISION seeks evidence-based explanation about local watershed environmental problems. That belongs to the scientific inquiry, which is also 'Inquiry-Based EE' and has internal value under EE perspective. Finally, this research proposed a prototype EE model that is about watershed concept, and is based on inquiry as general sense (scientific and insightful inquiries) and 'Environmental Studies for EE, (ESEE)' as the inquiry directions. The proposed model can be said a combination of the watershed concept and inquiry-based EE, and it seems that the model materializes better the EE nature than the ENVISION model.

  • PDF

Regionalized Daily Streamflow Model using a Modified Retention Parameter in SCS Method

  • 김대철;박성기;노재경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.47-58
    • /
    • 1990
  • Abstract A regionalized daily streamflow model using a modified retention parameter in the SCS method was developed to predict the daily streamflow of a natural series for Korean watersheds. Model verification showed that it is possible to use the model for extending short period records in a gaged watershed or for predicting daily streamflow in any ungaged watershed, with reasonable accuracy by simply inputing the name of the watershed boundary, the watershed size, the latitude and longitude of the watershed, and the daily areal rainfall.

  • PDF

Study on Representation of Pollutants Delivery Process using Watershed Model (수질오염총량관리를 위한 유역모형의 유달 과정 재현방안 연구)

  • Hwang, Ha Sun;Rhee, Han Pil;Lee, Sung Jun;Ahn, Ki Hong;Park, Ji Hyung;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.589-599
    • /
    • 2016
  • Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.

Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I) (농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I))

  • 권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

Studies on the Development of Storage Tank Model for both Long and Short Terms Runoff (II) (장단기유출 양용저유 탱크 모델의 개발에 관한 연구 (II))

  • 이순혁;박명근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.51-60
    • /
    • 1991
  • The main objective of this study is to examine the adaptability for the large watershed of the storage tank model which can be applied for the analysis of both long and short terms runoff developed on the basis of hydrologic data for a smaH mountaineous watershed. The results obtained in this study are summarized as follows ; 1. Areal rainfalls of the Dae Chong watershed were calculated by Thiessen method composed of 9 Thiessen networks. 2. Optimal parameters for two types, Model A and Model B of tank models were derived through calibration procedure by standardized Powell method. 3. Monthly simulated flows of Model B are seemed to be closer to the monthly observed than those of Model A during calibration period in the long terms runoff. 4. Relative errors for the simulated flood flows of Model B were apperaed as lower percentage to the observed than those of Model A during calibration period in the short terms runoff. 5. Daily simulated hydrographs of Model B are seemed to be closer to the daily observed than those of Model A during verification period in the long terms runoff. Significance of Model B was highly acknowledged in comparison with Model A in the correlation analysis between annual observed and annual simulated runoff. 6. Reproducibility of simulated flows for Model B is generally seemed to be better than that of Model A during calibration period in the short terms runoff. 7. It can be concluded that reproducibility of Model B is superior to that of Model A in the long and short terms runoff even a large watershed like the result of the small one. 8. It was verified that adaptability for the large watershed of Model B is superior to that of Model A between the two models which were developed by a small watershed characteristics for both long and short terms runoff. 9. Further study for getting a suitable tank model is desirable to be established by the decision, calibration method of initial parameters of tank model and by additional application of another watershed with different watersheds and meterological characteristics.

  • PDF

Analysis of Impact of Climate Change on River Flows in an Agricultural Watershed Using a Semi-distributed Watershed Model STREAM (준분포형 유역모델 STREAM을 이용한 기후변화가 농업유역의 하천유량에 미치는 영향 분석)

  • Jeong, Euisang;Cho, Hong-Lae
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.131-144
    • /
    • 2019
  • Climate Change affects the hydrological cycle in agricultural watersheds through rising air temperature and changing rainfall patterns. Agricultural watersheds in Korea are characterized by extensive paddy fields and intensive water use, a resource that is under stress from the changing climate. This study analyzed the effects of climate change on river flows for Geum Cheon and Eun-San Choen watershed using STREAM, a semi-distributed watershed model. In order to evaluate the performance and improve the reliability of the model, calibration and validation of the model was done for one flow observation point and three reservoir water storage ratio points. Climate change scenarios were based on RCP data provided by the Korea Meteorological Administration (KMA) and bias corrections were done using the Quantile Mapping method to minimize the uncertainties in the results produced by the climate model to the local scale. Because of water mass-balance, evapotranspiration tended to increase steadily with an increase in air temperature, while the increase in RCP 8.5 scenario resulted in higher RCP 4.5 scenario. The increase in evapotranspiration led to a decrease in the river flow, particularly the decrease in the surface runoff. In the paddy agricultural watershed, irrigation water demand is expected to increase despite an increase in rainfall owing to the high evapotranspiration rates occasioned by climate change.

Study on Estimation and Application of Discharge Coefficient about Nonpoint Source Pollutants using Watershed Model (유역모형을 이용한 유량조건별 배출계수 산정 및 활용방안 연구)

  • Hwang, Ha-Sun;Rhee, Han-Pil;Park, Jihyung;Kim, Yong-Seok;Lee, Sung-Jun;Ahn, Ki Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.653-664
    • /
    • 2015
  • TPLMS (Total water pollutant load management system) that is the most powerful water-quality protection program have been implemented since 2004. In the implementation of TPLMS, target water-quality and permissible discharged load from each unit watershed can be decided by water-quality modeling. And NPS (Non-point sources) discharge coefficients associated with certain (standard) flow are used on estimation of input data for model. National Institute of Environmental Research (NIER) recommend NPS discharge coefficients as 0.15 (Q275) and 0.50 (Q185) in common for whole watershed in Korea. But, uniform coefficient is difficult to reflect various NPS characteristics of individual watershed. Monthly NPS discharge coefficients were predicted and estimated using surface flow and water-quality from HSPF watershed model in this study. Those coefficients were plotted in flow duration curve of study area (Palger stream and Geumho C watershed) with monthly average flow. Linear regression analysis was performed about NPS discharge coefficients of BOD, T-N and T-P associated with flow, and R2 of regression were distributed in 0.893~0.930 (Palger stream) and 0.939~0.959 (Geumho C). NPS Discharge coefficient through regression can be estimated flexibly according to flow, and be considered characteristics of watershed with watershed model.

An Analysis of the Rainfall-Runoff of Natural Watershed Using the Hydraulic Routing Method (수리학적 추적 방법을 이용한 자연하천의 강우유출 해석)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.555-564
    • /
    • 2005
  • In this study, a simple rainfall-runoff model was proposed by using the hydraulic routing model that requires relatively few parameters. The parameters of this model were estimated by the watershed characteristics data, and were applied to the Soyang watershed and Ui stream watershed by using the kinematic wave for overland flow and dynamic wave routing for channel routing. In order to demonstrate validity, the proposed approach was compared to the HEC-1 model for the Soyang watershed. As the results of modeling have shown, the hydraulic model shows reasonable results similar to that of the HEC-1 model. This model also represents good results for the Ui stream watershed. Hence, even if this model is a simple rainfall-runoff model using general methodology, it is competitive to the natural watershed. However, it is still difficult to estimate the roughness coefficient and the catchment width, and therefore this model is in need of such supplements.

The Application of the GWLF model for Agricultural Small Watershed (농촌 소유역에 대한 GWLF 모형의 적용성 검토)

  • Hwang, Sye-Woon;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.667-672
    • /
    • 2005
  • The objective of the study is to investigate the application of the mid-range model for agricultural ungaged small watershed. In this study, the need for the selection of an optimal model was presented, and the Feasibility of the GWLF(Generalized Watershed Loading Function) model was examined for agricultural small watershed. The study watershed covers 384ha, and the hydrologic and water quality data were monitored from 1996 to 2004. In the results of the simulation for the calibration period $(1996{\sim}1999)$ and verification $(2002{\sim}2004)$, $R^2$ were $0.70{\sim}0.91$ and RMSE was $2.11{\sim}5.71$. Then, the results of water quality simulation for SS, TN and TP, show that $R^2$ were 0.58, 0.47 and 0.62 respectively. This results were compared with the other research using the detailed models (SWAT, HSPF) for the same watershed and this showed the feasibility of mid-range model for the small watershed.

  • PDF